

State primary special standard of complex refractive index and length in the field of measuring the thickness of optical coatings GET 203-2024
https://doi.org/10.32446/0368-1025it.2024-6-4-11
Abstract
In many areas of science and technology, there is a task to measure the optical and geometric characteristics of thin fi lms. The need to ensure the uniformity of measurements in this area led to the creation of the State primary standard of complex refractive index units GET 203-2012. In it, the complex refractive index was measured using spectral ellipsometry by measuring ellipsometric angles. However, this standard did not provide metrological support for coating thickness measurements when measuring their complex refractive index. In the period 2020–2023, VNIIOFI GET 203-2012 improved and expanded its functionality in terms of reproducing the unit of length in the fi eld of thickness measurements of optical coatings. The improved standard has been approved as the State primary special standard for units of complex refractive index and units of length in the fi eld of thickness measurements of optical coatings GET 203-2024. GET 203-2024 ensures the unity of measurements of complex refractive index and units of length in the fi eld of optical thickness measurements in the range from 1 nm to 50 μm. The range expansion was achieved by introducing an ellipsometer with an infrared range wavelength range equipped with an FTIR Fourier spectrometer. This range expansion is important for such industries as optics, microelectronics, optoelectronics, integrated optics and other areas of science and technology. This article presents the composition, operating principle and main metrological characteristics of GET 203-2024.
About the Authors
G. N. VishnyakovRussian Federation
Gennady N. Vishnyakov
Moscow
V. L. Minaev
Russian Federation
Vladimir L. Minaev
Moscow
A. A. Samoylenko
Russian Federation
Alexey A. Samoylenko
Moscow
References
1. Komrakov B. M., Shapochkin B.A. Izmerenie parametrov opticheskih pokrytij. Mashinostroenie Publ., Moscow (1986). (In Russ.)
2. Lee S. W., Lee S. Y., Choi G., Pahk H. J. Co-axial spectroscopic snap-shot ellipsometry for real-time thickness measurements with a small spot size. Optics Express, 28(18), 25879–25893 (2020). https://doi.org/10.1364/OE.399777
3. Lee S. W., Choi G., Lee S. Y., Cho Y., Pahk H. J. Coaxial spectroscopic imaging ellipsometry for volumetric thickness measurement. Applied Optics, 60(1), 67–74 (2021). https://doi.org/10.1364/AO.410945
4. Choi G., Lee S. W., Lee S. Y., Pahk H. J. Single-shot multispectral angle-resolved ellipsometry. Applied Optics, 59(21), 6296–6303 (2020). https://doi.org/10.1364/AO.396907
5. Peng L., Tang D., Wang J., Chen R., Gao F., Zhou L. Robust incident angle calibration of angle-resolved ellipsometry for thin fi lm measurement. Applied Optics, 60(13), 3971–3976 (2021). https://doi.org/10.1364/AO.419357
6. Azam R., Bashara N. Jellipsometrija i poljarizovannyj svet. Mir Publ., Moscow (1981). (In Russ.)
7. Rzhanov A. V., Svitashev K. K., Semenenko A. I., Semenenko L. V., Sokolov V. K. Osnovy jellipsometrii. Nauka Publ., Novosibirsk (1978). (In Russ.)
8. Gorshkov M. M. Jellipsometrija. Sov. Radio Publ., Moscow (1974). (In Russ.)
9. Von Candela G. A., Chandler-Horowitz D. Preparation and certifi cation of SRM-2530, Ellipsometric parameters Δ and ψ and derived thickness and refractive index of a silicon dioxide layer on silicon, NIST Spec. Publ. (1988).
10. Chandler-Horowitz D. Analytic Analysis of Ellipsometric Errors, National Bureau of Standards Special Publication (1986).
11. J. M. M. de Nijs, A. van Silfhout. Systematic and random errors in rotating-analyzer ellipsometry. Journal of the Optical Society of America A, 5(6), 773–781(1988). https://doi.org/10.1364/JOSAA.5.000773
12. Cho Y. J., Chegal W., Lee J. P., Cho H. M. Universal evaluation of combined standard uncertainty for rotating-element spectroscopic ellipsometers. Optics Express, 24(23) 26215–62227 (2016). https://doi.org/10.1364/OE.24.026215
13. Dembele V., Choi I., Kheiryzadehkhanghah S., Choi S., Kim J., Kim C. S., Kim D. Current Optics and Photonics, 4(4), 345–352 (2016). https://doi.org/10.3807/COPP.2020.4.4.345
14. Gilliot M. Errors in ellipsometry data fi tting. Optics Communications, 427, 477–484 (2018). https://doi.org/10.1016/j.optcom.2018.07.025
Supplementary files
Review
For citations:
Vishnyakov G.N., Minaev V.L., Samoylenko A.A. State primary special standard of complex refractive index and length in the field of measuring the thickness of optical coatings GET 203-2024. Izmeritel`naya Tekhnika. 2024;73(6):6-13. (In Russ.) https://doi.org/10.32446/0368-1025it.2024-6-4-11