Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Quality control of quantitative diffusion-weighted magnetic resonance imaging: metrological problems

https://doi.org/10.32446/0368-1025it.2024-5-64-76

Abstract

Quantitative magnetic resonance imaging is a modern method for detecting pathological changes in the patient’s tissues. However, images with quantitative characteristics are not widely used due to the limitation of the accuracy and reproducibility of the measured values. The purpose of this work is to formulate the metrological problem of quantitative magnetic resonance imaging and to ensure the reliability of research based on the analysis of practical approaches to quality control of diffusion-weighted magnetic resonance imaging. As part of the work performed, an analysis was carried out of the use of phantoms as means to ensure quality control of certain parameters of quantitative magnetic resonance imaging. The importance of validation was noted, the metrics used to control the quality of quantitative magnetic resonance imaging were highlighted, an overview of examples of clinical studies using diffusion-weighted magnetic resonance imaging was presented. It was found that accurate calibration and testing of magnetic resonance imaging scanners, as well as verification of image analysis tools, are necessary for the use of quantitative magnetic resonance imaging data in clinical practice.

About the Authors

V. A. Vasilev
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Health Care Department
Russian Federation

Yuri A. Vasilev

Moscow



E. S. Akhmad
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Health Care Department
Russian Federation

Ekaterina S. Akhmad

Moscow



M. V. Cherkasskaya
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Health Care Department
Russian Federation

Marina V. Cherkasskaya

Moscow



D. S. Semenov
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Health Care Department
Russian Federation

Dmitriy S. Semenov

Moscow



O. Yu. Panina
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Health Care Department
Russian Federation

Olga Yu. Panina

Moscow



A. V. Petraikin
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Health Care Department
Russian Federation

Aleksey V. Petraikin

Moscow



References

1. Deng J., Wang Y. Quantitative magnetic resonance imaging biomarkers in oncological clinical trials: Current techniques and standardization challenges. Chronic Diseases and Translational Medicine, 3(1), 8–20 (2017) https://doi.org/10.1016/j.cdtm.2017.02.002

2. Bickel H., Pinker-Domenig K., Bogner W., Spick C. et al. Quantitative apparent diffusion coefficient as a noninvasive imaging biomarker for the differentiation of invasive breast cancer and ductal carcinoma in situ. Investigative Radiology, 50(2), 95–100 (2015). https://doi.org/10.1097/RLI.0000000000000104

3. Gawande R., Gonzalez G., Messing S. et al. Role of diffusion-weighted imaging in differentiating benign and malignant pediatric abdominal tumors. Pediatric Radiology, 43(7), 836–845 (2013). https://doi.org/10.1007/s00247-013-2626-0

4. Paul J. S., Raveendran S. G. Understanding phase contrast MR angiography: a practical approach with MATLAB examples, Springer International Publishing (2016).

5. Sergunova K. A., Petraikin A. V., Potrakhov N. N. et al. Disk phantom and quality assurance procedure in magnetic resonance angiography. Biotechnosfera, 2(50), 2–10 (2017). (In Russ.) https://elibrary.ru/ytviyx

6. Sergunova K. A., Karpov I. N., Gromov A. I. et al. Development of a quality assurance phantom and software module for comparative assessment of neoplastic processes in diffusion-weighted magnetic resonance imaging and diffusion-weighted imaging with background suppression. Biotekhnosfera, 5(47), 9–13 (2016). (In Russ.) https://elibrary.ru/xrgvxt

7. Lerski R. A., McRobbie D. W., Straughan K., Walker P. M., de Certaines J. D., Bernard A. M. V. Multi-center trial with protocols and prototype test objects for the assessment of MRI equipment. Magnetic Resonance Imaging, 6(2), 201–214 (1988). https://doi.org/10.1016/0730-725x(88)90451-1

8. Akhmad E. S., Semenov D. S, Sergunova K. A. et al. The method of monitoring the parameters and characteristics of magnetic resonance imaging in operating conditions. Ser. The best practices of radiation and instrumental diagnostics. Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Department of Health of the City of Moscow, Moscow (2022). (In Russ.) https://elibrary.ru/dnhfrd

9. Cashmore M. T., McCann A. J., Wastling S. J. et al. Clinical quantitative MRI and the need for metrology. British Journal of Radiology, 94(1120), 20201215 (2021). https://doi.org/10.1259/bjr.20201215

10. Khoruzhaya A. N., Akhmad E. S., Semenov D. S. The role of the quality control system for diagnostics of oncological diseases in radiomics. Digital Diagnostics, 2(2), 170–184 (2021). https://doi.org/10.17816/DD60393

11. Hagiwara A., Fujita S., Ohno Y. et al. Variability and standardization of quantitative imaging. Investigative Radiology, 55(9), 601–616 (2020). https://doi.org/10.1097/RLI.0000000000000666

12. McHugh D. J., Zhou F. L., Wimpenny I. et al. A biomimetic tumor tissue phantom for validating diffusion-weighted MRI measurements. Magnetic Resonance in Medicine, 80(1), 147–158 (2018). https://doi.org/10.1002/mrm.27016

13. Sullivan D. C., Obuchowski N. A., Kessler L. G. et al. standards for quantitative imaging biomarkers. Radiology, 277(3), 813–825 (2015). https://doi.org/10.1148/radiol.2015142202

14. O’Connor J. P. B., Aboagye E. O., Adams J. E. et al. Imaging biomarker roadmap for cancer studies. Nature Reviews Clinical Oncology, 14(3), 169–186 (2017). https://doi.org/10.1038/nrclinonc.2016.162

15. Sorace A. G., Wu C., Barnes S. L. et al. Repeatability, reproducibility, and accuracy of quantitative MRI of the breast in the community radiology setting. Journal of Magnetic Resonance Imaging, 48(3), 695–707 (2018). https://doi.org/10.1002/jmri.26011

16. Shur J., Blackledge M., D’Arcy J. et al. MRI texture feature repeatability and image acquisition factor robustness, a phantom study and in silico study. European Radiology Experimental, 5(1), 1–11 (2021). https://doi.org/10.1186/s41747-020-00199-6

17. Bane O., Hectors S. J., Wagner M. et al. Accuracy, repeatability, and interplatform reproducibility of T1 quantification methods used for DCE-MRI: Results from a multicenter phantom study. Magnetic Resonance in Medicine, 79(5), 2564–2575 (2018). https://doi.org/10.1002/mrm.26903

18. Boss M. A., Chernevert T. L., Rosen M. A. et al. QIBA PDF MRI Technical Committee: Activities in Diffusion MRI DWI Phantom Analysis Software Summary of Activities. QIBA_PDF_DWI_Poster_2014_v1_0.pdf (rsna.org) (Accessed March 01, 2024).

19. Chenevert T. L., Galbán C. J., Ivancevic M. K. et al. Diffusion coefficient measurement using a temperature-controlled fluid for quality control in multicenter studies. Journal of Magnetic Resonance Imaging, 34(4), 983–987 (2011). https://doi.org/10.1002/jmri.22363

20. Keenan K. E., Wilmes L. J., Aliu S. O. et al. Design of a breast phantom for quantitative MRI. Journal of Magnetic Resonance Imaging, 44(3), 610–619 (2016). https://doi.org/10.1002/jmri.25214

21. Keenan K. E., Peskin A. P., Wilmes L. J. et al. Variability and bias assessment in breast ADC measurement across multiple systems. Journal of Magnetic Resonance Imaging, 44(4), 846–855 (2016). https://doi.org/10.1002/jmri.25237

22. Ihalainen T., Kuusela L., Soikkeli M. et al. A body-sized phantom for evaluation of diffusion-weighted MRI data using conventional, readout-segmented, and zoomed echo-planar sequences. Acta Radiologica, 57(8), 947–954 (2016). https://doi.org/10.1177/0284185115613652

23. Weller A., Papoutsaki M. V., Waterton J. C. et al. Diffusion-weighted (DW) MRI in lung cancers: ADC test-retest repeatability. European Radiology, 27(11), 4552–4562 (2017). https://doi.org/10.1007/s00330-017-4828-6

24. Boss M. A., Snyder B. S., Kim E. et al. Repeatability and reproducibility assessment of the apparent diffusion coefficient in the prostate: a trial of the ECOG-ACRIN Research Group (ACRIN 6701). Journal of Magnetic Resonance Imaging, 56(3), 668–679. (2022). https://doi.org/10.1002/jmri.28093

25. Partridge S. C., Steingrimsson J., Newitt D. C. et al. Impact of alternate b-value combinations and metrics on the predictive performance and repeatability of diffusion-weighted MRI in breast cancer treatment: results from the ECOG-ACRIN A6698 Trial. Tomography, 8(2), 701–717 (2022). https://doi.org/10.3390/tomography8020058

26. Galbán C. J., Ma B., Malyarenko D. et al. Multi-site clinical evaluation of DW-MRI as a treatment response metric for breast cancer patients undergoing neoadjuvant chemotherapy. PLOS ONE, 10(3), e0122151 (2015). https://doi.org/10.1371/journal.pone.0122151

27. Partridge S. C., Singer L., Sun R. et al. Diffusion-weighted MRI: Influence of intravoxel fat signal and breast density on breast tumor conspicuity and apparent diffusion coefficient measurements. Journal of Magnetic Resonance Imaging, 29(9), 1215–1221 (2011). https://doi.org/10.1016/j.mri.2011.07.024

28. Newitt D. C., Malyarenko D., Chenevert T. L. et al. Multisite concordance of apparent diffusion coefficient measurements across the NCI Quantitative Imaging Network. Journal of Medical Imaging, 5(1), 011003 (2018). https://doi.org/10.1117/1.JMI.5.1.011003

29. Sharma U., Sah R. G., Agarwal K. et al. Potential of diffusion-weighted imaging in the characterization of malignant, benign, and healthy breast tissues and molecular subtypes of breast cancer. Frontiers in Oncology, 6, 126 (2016). https://doi.org/10.3389/fonc.2016.00126

30. Whisenant J. G., Romanoff J., Rahbar H. et al. Factors Affecting image quality and lesion evaluability in breast diffusion-weighted MRI: observations from the ECOG-ACRIN Cancer Research Group Multisite Trial (A6702). Journal of Breast Imaging, 3(1), 44–56 (2021). https://doi.org/10.1093/jbi/wbaa103

31. Solovyova S. N., Matkin A .E. Development of a method for assessing MRI images based on values normalized according to the Hounsfield scale. Modern science-intensive technologies, (4), 118–126 (2018). (In Russ.) https://elibrary.ru/xpppyt

32. Keenan K. E., Ainslie M., Barker A. J. et al. Quantitative magnetic resonance imaging phantoms: A review and the need for a system phantom. Magnetic Resonance in Medicine, 79(1), 48–61 (2018). https://doi.org/10.1002/mrm.26982

33. Koh D. M., Collins D. J. Diffusion-weighted MRI in the body: applications and challenges in oncology. American Journal of Roentgenology, 188(6), 1622–1635 (2007). https://doi.org/10.2214/AJR.06.1403

34. Vasiliev Yu. A., Semenov D. S., Akhmad E. S. et al. Method of monitoring technical condition of magnetic resonance imaging scanner using clinical images of brain: patent RU 2811031 C1. Inventions. Utility models, no. 1 (2024).

35. Vasiliev Yu. A., Savkina E. F., Vladzymyrskyy A. V. et al. Overview of modern digital diagnostic image markup tools. Kazan Medical Journal, 104(5), 750–760 (2023). (In Russ.). https://doi.org/10.17816/KMJ349060


Supplementary files

Review

For citations:


Vasilev V.A., Akhmad E.S., Cherkasskaya M.V., Semenov D.S., Panina O.Yu., Petraikin A.V. Quality control of quantitative diffusion-weighted magnetic resonance imaging: metrological problems. Izmeritel`naya Tekhnika. 2024;(5):64-76. (In Russ.) https://doi.org/10.32446/0368-1025it.2024-5-64-76

Views: 193


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)