

Semantic analysis of two-syllabic terms of metrology. Part 2: Risk in measurements and calculations
https://doi.org/10.32446/0368-1025it.2024-2-13-22
Abstract
Prior to the requirement for testing and calibration laboratories to take into account the risk of statistical assumptions, false positive and false negative decisions in international documents, it was found that the methodology of the “Guide to Expressing Measurement Uncertainty” based on the Bayes approach and the Monte Carlo method for calculating probabilistic risk characteristics is not applicable. A later draft revision of the “Manual on the Expression of Measurement Uncertainty” attempted to shift the interpretation of measurement uncertainty from the scattering parameter to the probability distribution. An attempt to contribute to solving the problem of definitional uncertainty in the International Dictionary of Basic and Basic Terms of Metrology was also unsuccessful. In the new version of the dictionary of general statistical terms and probability theory terms, the term measurement uncertainty is excluded, and one of the notes states that “the probability distribution fully describes the probabilistic properties of the uncertainty of the result”. However, due to the new requirements for risk calculations, international documents were urgently put into effect without radical assessments of the inapplicability of the Bayes approach and the Monte Carlo method, the disadvantages were renamed limitations, but there are no specific instructions for calculating risks. Based on the experience of the compositional approach to estimating accuracy, a procedure based on the convolution of probability distributions in the form of a modified reversal formula is recommended, which allows taking into account the definitive uncertainty in the moment approach. It is established that the method of accounting for the definitive uncertainty by convolution of uniform distributions is practically suggested in the text of the “Manual on the expression of measurement uncertainty”, but not used.
About the Author
S. F. LevinRussian Federation
Sergey F. Levin
Moscow
References
1. Levin S. F. Semantic analysis of two-syllabic terms of metrology. Part 1: The Types of measurements and methods of measurements. Izmeritel’naya Tekhnika, 73(1), 26–34 (2024). https://doi.org/10.32446/0368-1025it.2024-1-26-34 (In Russ.)
2. Slaev V. A. (ed.). Rukovodstvo po vyrazheniyu neopredelennosti izmereniya. VNIIM Publ., St. Petersburg (1999). (In Russ.)
3. International Vocabulary of Metrology – Basic and General Concepts and Associated Terms. VIM, 3rd ed. (2007).
4. Levin S. F. On metrological mentality: calibration and definitional uncertainty. Legal and applied metrology, 164(2), 46–55 (2020). (In Russ.)
5. Metrologicheskoe obespechenie ispytanij i ekspluatacii slozhnyh ob“ektov. Nauchno-metodicheskie materialy. VVIA im. prof. N. E. Zhukovskogo, Moscow (1996). (In Russ.)
6. Bich W., Cox M. G., Harris P. M. Evolution of the “Guide to the Expression of the Uncertainty in Measurement”. Metrologia, 43(4), S161 (2006). https://doi.org/10.1088/0026-1394/43/4/S01
7. Rabinovich S. G. O neobhodimosti sozdaniya novyh rekomendacij po ocenivaniyu pogreshnostej i neopredelennostej izmerenij. Sistemy obrabotki informacii, 4(85), 23–26 (2010). (In Russ.)
8. Bich W., Cox M. G., Dybkaer R. et al. Revision of the “Guide to the expression of uncertainty in measurement”. Metrologia, 49(6), 702–705 (2012). https://doi.org/10.1088/0026-1394/49/6/702
9. Efremova N. Y., Chunovkina A. G. Development of the concept of uncertainty in measurement and revision of the Guide to the expression of uncertainty in measurement. Part 2. Comparative analysis of basic provisions of the guide and their planned changes. Measurement Techniques, 60(5), 418–424 (2017). https://doi.org/10.1007/s11018-017-1212-5
10. Levin S. F. Metrologiya. Matematicheskaya statistika. Legendy i mify 20-go veka: Legenda o neopredelennosti. Partnery i konkurenty, (1), 13–25 (2001). (In Russ.)
11. Ushakov D. N. (ed.). Tolkovyj slovar’ russkogo yazyka, in 4 volums, vol. I, A–Kyuriny. OGIZ Publ., Moscow (1935). (In Russ.)
12. Ushakov D. N. (ed.). Tolkovyj slovar’ russkogo yazyka, in 4 volums, vol. II, L–Oyalovet’. OGIZ Publ., Moscow (1935). (In Russ.)
13. Ehrlich Ch., Dybkaer R., Wöger W. Evolution of philosophy and description of measurement (preliminary rationale for VIM3). OIML Bulletin, XLVIII(2), 23–35 (April 2007).
14. Lekhina I. V., Lokshinoj S. M., Petrova F. N. (gener. ed.), Shaumyana L. S. (eds.). Slovar’ inostrannyh slov. Sovetskaya enciklopediya Publ., Moscow (1964). (In Russ.)
15. Pfanzagl J., Baumann V., Huber H. Theory of Measurement, 2nd revised ed., Wurzburg – Wien, Physica-Verlag (1971).
16. Lebeg G. Ob izmerenii velichin. Ed. A. N. Kolmogorov. Gosuchpedgiz Publ., Moscow (1938). (In Russ.)
17. Levin S. F. Neopredelennost’ rezul’tatov resheniya izmeritel’nyh zadach v shirokom i uzkom smyslah. Proc. International Seminar Mathematics, statistics and computation to support measurement quality, St. Petersburg, 28–30 June 2006, VNIIM, KOOMET, St. Petersburg, pp. 48, 50 (2006). (In Russ.)
18. Zaharenko E. N., Komarova L. N., Nechaeva I. V. Novyj slovar’ inostrannyh slov. Azbukovnik Publ., Moscow (2003). (In Russ.)
19. Förster E., Rönz B. Methoden der Korrelations und Regressionsanlyse. Die Wirtschaft, Berlin (1979). (In German)
20. Ivahnenko A. G. Metod gruppovogo ucheta argumentov – konkurent metoda stohasticheskoj apprksimacii. Аvtomatikа, (3), 58–72 (1968). (In Russ.)
21. Quenouille M. H. Approximate tests of correlation in time-series. Journal of the Royal Statistical Society: Series B (Methodological), B11, 68–84 (1949). https://doi.org/10.1111/J.2517-6161.1949.TB00023.X
22. Quenouille M. H. Notes o n bias in estimation. Biometrika, 43(3-4), 353–360 (1956). https://doi.org/10.2307/2332914
23. Tukey J. W. Bias and Confi dence in Not-Quite Large Sample. Annals of Mathematical Statistics, 29, 614 (1958).
24. Ivahnenko A. G., Stepashko V. S. Pomekhoustojchivost’ modelirovaniya. Naukova dumka Publ., Kiev (1985). (In Russ.)
25. Ivahnenko A. G., Kopa Yu. V., Todua N. N., Petrake G. Metod matematicheskogo modelirovaniya slozhnyh ekologicheskih system. Аvtomatikа, (4), 20–34 (1971). (In Russ.)
26. Ivahnenko A. G. Samoobuchayushchiesya sistemy raspoznavaniya i avtomaticheskogo upravleniya. Tekhnika Publ., Kiev (1969). (In Russ.)
27. Rosenblatt F. Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Spartan Books, Washington (1962).
28. Prohorov A. M. (chief ed.). Veroyatnost’ i matematicheskaya statistika: Enciklopediya. Bol’shaya Rossijskaya enciklopediya Publ., Moscow (1999). (In Russ.)
29. Levin S. F. Izmeritel’naya zadacha proverki sootvetstviya sredstv izmerenij ustanovlennym trebovaniyam. Kontrol’noizmeritel’nye pribory i sistemy, (6), 27–33 (2016). (In Russ.)
30. Lévy P. Calcul des probabilitiés. Gauthir-Villars, Paris (1925). (In Frеnch)
31. Cramér H. Mathematical methods of statistics. Princeton Univer. Press, Princeton (1946).
32. Lukacs E. Characteristic functions. Sec. ed, revised and enlarged. Hafner Publishing Company, New York (1970).
33. Levin S. F. On Uncertainty Representation Formats in Solving Measurement Problems. Measurement Techniques, 65(4), 240–249 (2022). https://doi.org/10.1007/s11018-022-02075-8
Review
For citations:
Levin S.F. Semantic analysis of two-syllabic terms of metrology. Part 2: Risk in measurements and calculations. Izmeritel`naya Tekhnika. 2024;(2):13-22. (In Russ.) https://doi.org/10.32446/0368-1025it.2024-2-13-22