Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

State primary standard of the unit of wave resistance in coaxial waveguides GET 75-2023

https://doi.org/10.32446/0368-1025it.2024-2-4-12

Abstract

The issues of measuring the wave resistance and complex reflection and transmission coefficients of devices operating at ultrahigh frequencies in coaxial waveguides are considered. Measurements of these parameters are important in the development and production of communication and information transmission systems, radar and radio navigation systems. In order to ensure the uniformity of measurements, reproduction and transmission of wave resistance units and complex reflection and transmission coefficients to measuring instruments with coaxial connectors of type 1 mm in the frequency range 0.01–67 GHz, the state primary standard of the unit resistance in coaxial waveguides GET 75-2023 has been approved. It includes means of reproducing the unit of wave resistance, complex reflection coefficients, a comparator and comparison standards in a coaxial path with a cross section of 1.0/0.434 mm with a connector of type 1 mm. The expressions for calculating the parameters of coaxial waveguides with bimetallic conductors are refined. The technical characteristics and results of metrological studies of GET 75-2023 are presented. The results of the research confirmed the high accuracy of GET 75-2023, which has comparable metrological characteristics with the standards of national metrological institutes of other countries.

About the Authors

V. I. Evgrafov
West-Siberian Branch of Russian Metrological Institute of Technical Physics and Radio Engineering
Russian Federation

Vladimir I. Evgrafov

Novosibirsk



N. V. Konyshev
West-Siberian Branch of Russian Metrological Institute of Technical Physics and Radio Engineering
Russian Federation

Alexander V. Konyshev

Novosibirsk



N. V. Konyshev
West-Siberian Branch of Russian Metrological Institute of Technical Physics and Radio Engineering
Russian Federation

Nikolay V. Konyshev

Novosibirsk



D. N. Chervonetsky
West-Siberian Branch of Russian Metrological Institute of Technical Physics and Radio Engineering
Russian Federation

Dmitry N. Chervonetsky

Novosibirsk



References

1. Howell K., Wong K. DC to 110 GHz measurements in coax using the 1 mm connector. Microwave Journal, 42(7), 22–34 (1999).

2. Seeds A. J., Williams K. J. Microwave Photonics, in Journal of Lightwave Technology, 24(12), 4628–4641 (2006). https://doi.org/10.1109/JLT.2006.885787

3. Yao J. Microwave Photonics, in Journal of Lightwave Technology, 27(3), 314–335 (2009). https://doi.org/10.1109/JLT.2008.2009551

4. Petrov V. P., Gutina E. M., Kostyuchenko K. K., Konoplev V. P. Special State Wave Impedance Standards. Measurement Techniques, 19(3), 396–400 (1976). https://doi.org/10.1007/BF00822523

5. Abubakirov B. A. Komplekt SVCh ustrojstv dlja kalibrovki avtomatizirovannyh izmeritel’nyh sistem. Tehnika sredstv svjazi. Serija “Radioizmeritel’naja tehnika”, (2), 79–85 (1977). (In Russ.)

6. Evgrafov V. I., Konyshev A. V. State primary standard for means of measuring the wave resistance in coaxial waveguides GET 75-2017. In: Actual Problems of Electronic Instrument Engineering. Proceedings of XIV International Scientifi c-technical Conference APEIE-2018, Novosibirsk, October 2–6, 2018, at 8 vol., vol. 3, pp. 95–98, Novosibirsk State Technical University, Novosibirsk (2018). (In Russ.)

7. Jurkus A. P., Stumper U., National standards and standard measurement systems for impedance and reflection coefficient. Proc. IEEE, 74(1), 39–45 (1986). https://doi.org/10.1109/PROC.1986.13399

8. Wong K. H. Characterization of Calibration Standards by Physical Measurements. 39th ARFTG Conference Digest, Albuquerque, NM, USA, 1992, pp. 53–62. https://doi.org/10.1109/ARFTG.1992.326972

9. Eio C. P., Protheroe S. J., Ridler N. M. Characterising beadless air lines as reference artefacts for S-parameter measurements at RF and microwave frequencies. IEE Proceedings – Science, Measurement and Technology, 153(6), 229–234 (2006). https://doi.org/10.1049/ip-smt:20060092

10. Hoffmann J. P., Ruefenacht J., Wollensack M., Zeier M. Comparison of 1.85 mm line reflect line and offset short calibration. 2010 76th ARFTG Microwave Measurement Conference, Clearwater Beach, FL, USA, 2010, pp. 1–7. https://doi.org/10.1109/ARFTG76.2010.5700047

11. Zeier M., Hoffmann J., Hürlimann P., Rüfenacht J., Stalder D., Wollensack M. Establishing traceability for the measurement of scattering parameters in coaxial line systems. Metrologia, 55(1), 23–26 (2018). https://doi.org/10.1088/1681-7575/aaa21c

12. Efimov I. E., Ostan’kovich G. A. Radiochastotnye linii peredachi. Radiochastotnye kabeli [Radio frequency transmission lines. Radio frequency cables]. Svjaz Publ., Moscow (1977). (In Russ.)

13. Daywitt W. C. Exact principal mode field for a lossy coaxial line. IEEE Transactions on Microwave Theory and Techniques, 39(8), 1313–1322 (1991). https://doi.org/10.1109/22.85406

14. Evgrafov V. I. Analiz metodov reshenij uravnenij Maksvella dlja koaksial’noj linii s poterjami [Analysis of methods for solving Maxwell’s equations for a lossy coaxial line]. In: Actual Problems of Electronic Instrument Engineering. APEIE-2004. Proceedings of VII International Scientific-technical Conference. Novosibirsk, September 21–24, 2004, at 7 vol., vol. 3, pp. 17–23, Novosibirsk (2004). (In Russ.)

15. Korn G., Korn T. Spravochnik po matematike dlja nauchnyh rabotnikov i inzhenerov. Nauka Publ., Moscow (1974).

16. Mackenzie T. E., Sanderson A. E., Some fundamental design principles for the development of precision coaxial standards and components. IEEE Transactions on Microwave Theory and Techniques, 14(1), 29–39 (1966). https://doi.org/10.1109/TMTT.1966.1126148

17. Kilby G. J., Ridler N. M. Comparison of theoretical and measured values for attenuation of precision coaxial lines. Electronics Letters, 28(21), 1992–1994 (1992). http://doi.org/10.1049/el:19921277

18. Tuttle J., Canavan E., DiPirro M. Thermal and electrical conductivity measurements of cda 510 phosphor bronze. AIP Conference. Proceedings, 1219(1), 55–62 (2010). https://doi.org/10.1063/1.3402333

19. Holloway C. L., Kuester E. F. Power loss associated with conducting and superconducting rough interfaces. IEEE Transactions on Microwave Theory and Techniques, 48(10), 1601–1610 (2000). https://doi.org/10.1109/22.873886


Review

For citations:


Evgrafov V.I., Konyshev N.V., Konyshev N.V., Chervonetsky D.N. State primary standard of the unit of wave resistance in coaxial waveguides GET 75-2023. Izmeritel`naya Tekhnika. 2024;(2):4-12. (In Russ.) https://doi.org/10.32446/0368-1025it.2024-2-4-12

Views: 317


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)