

Method of instantaneous signal synchronization of measuring pulse generators
https://doi.org/10.32446/0368-1025it.2024-1-48-55
Abstract
The synchronization methods used in the pulse generators of the G5 measuring group in the external trigger mode are analyzed. The factors determining the error in the formation of time intervals in this mode have been studied. It is shown that the main source of errors in the formation of time intervals during external triggering of measuring pulse generators is the variation in the position of the clock generator reference pulses relative to the external trigger pulses. An analytical review of synchronization methods based on the sampling of time intervals by a multi-tap delay line as a pulse signal propagates along it is carried out. The method of instantaneous synchronization of output pulses is proposed, using sampling of the period of the reference pulses of the clock generator with a multi-tap delay line and fixing the position of the edge of the external trigger pulse within the period of the reference frequency by triggers that control the multiplexer, which connects the output of the multi-tap delay line to the output of the device, at which the edge of the next reference clock pulse generator lags by a minimum time from the front of the external trigger pulse. A device is presented that makes it possible to implement the proposed solution. The simulation of the device was carried out, illustrating the details of its functioning. Jitter was assessed on a prototype device using an integrated 5-tap delay line with a total delay of 20 ns. The method can be applied in measuring pulse generators and belongs to the field of pulse technology.
About the Authors
O. G. BondarRussian Federation
Oleg G. Bondar
Kursk
E. O. Brezhneva
Russian Federation
Ekaterina O. Brezhneva
Kursk
M. D. Pushkarev
Russian Federation
Nikita D. Pushkarev
Kursk
References
1. Lukinyh O. G. A method of synthesizing signals with exactly specified probability characteristics. Measurement Techniques, 49(2), 127–129 (2006). https://doi.org/10.1007/s11018-006-0075-y
2. Mogilev I. V., Bazhenov N. R. Method for Digitally Modulated Signals Synthesis with Normalized Parameters. Measurement Techniques, 65(5), 366–372 (2022). https://doi.org/10.1007/s11018-022-02093-6
3. Vorohovskij Ja. L. Precizionnye kvarcevye rezonatory i generatory dlya sovremennyh radioelektronnyh kompleksov, Elektronika: nauka, tekhnologiya, biznes, 1, 34–38 (2010). (In Russ.)
4. Shevcov D. A., Ul’jashhenko G. M., Mashukov E. V. Three-phase harmonic signal generators with controlled frequency and amplitude, Prakticheskaja silovaja jelektronika, 63(2), 17–21 (2020).(In Russ.)
5. Mohammad U., Yasin M. Y., Yousuf R., et al. A novel square wave generator based on the translinear circuit scheme of second generation current controlled current conveyor-CCCII. SN Applied Sciences, 1(587) (2019). https://doi.org/10.1007/s42452-019-0608-z
6. Leal G. T., de Moura Rodrigues G. M., Haddad S. A. P. A sinusoidal current generator and a TEB decomposer for measuring bioimpedance in a cardiac pacemaker, using an analog wavelet fi lter. Analog Integrated Circuits and Signal Processing, (108), 525–538 (2021). https://doi.org/10.1007/s10470-021-01896-x
7. Yalandin M. I., Shpak V. G. Compact high-power subnanosecond repetitive-pulse generators (review). Instruments and Experimental Techniques, 44(3), 285–310 (2001). https://doi.org/10.1023/A:1017535304915
8. Nikonov A. V. Generaciya i formirovanie ispytatel’nyh vozdejstvij dlya elektronnyh module. Dynamics of systems, mechanisms and machines, 4(5), 248–259 (2017). (In Russ.) https://doi.org/10.25206/2310-9793-2017-5-4-248-259
9. Samkov I., Shokman P. Sistemnye taktovye generatory: sintezator s fazovoj sinhronizaciej protiv kvarcevogo generatora. Components & technologies, (8), 65–68 (2009). (In Russ.)
10. Bondar’ O. G., Brezhneva E. O., Sisonov I. I., Polyakov N. V. Generator pryamougol’nyh impul’sov. Patent RU 2759439 C1. Inventions. Utility models, no. 32 (2021).
11. Bondar’ O. G., Brezhneva E.O., Polyakov N.V., Ryabko A.V. Sposob fazovoj privyazki generiruemoj posledovatel’nosti impul’sov k impul’su vneshnego zapuska. Patent RU 2785070 C1. Inventions. Utility models, no. 34 (2022).
12. Moiseev M. I., Dreyzin V. E., Bondar’ O. G. Realization of external start in precision generators of rectangular impulses. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta, 1(1), 64–70 (2012). (In Russ.)
13. Bondar’ O. G., Dreyzin V. E., Ovsyannikov Y. A., Polyakov V. G. Ustrojstvo fazovoj privyazki generiruemoj posledovatel’nosti impul’sov k impul’su vneshnego zapuska. Patent RU 2256290 C1. Inventions. Utility models, no. 19 (2003).
14. Bondar’ O. G., Moiseyev M. I. Sposob fazovoj privyazki generiruemoj posledovatel’nosti impul’sov k impul’su vneshnego zapuska. Patent RU 2447576 C1. Inventions. Utility models, no. 10 (2012).
15. Bondar’ O. G., Brezhneva E. O., Komarov O. A. Sposob fazovoj privyazki generiruemoj posledovatel’nosti impul’sov k impul’su vneshnego zapuska. Patent RU 2693595 C1. Inventions. Utility models, no. 19 (2019).
16. Brezhneva E. O., Bondar’ O. G., Mandzhiyeva E. A. External clocking in precision pulse generators. Telekommunikacii, (1), 32–39 (2022). (In Russ.)
17. Bondar’ O. G., Brezhneva E. O., Sizonov I. I. Sposob sinhronizacii taktovyh impul’sov vneshnim impul’som. EAPO Patent 039506. Inventions, no. 2 (22 February 2022).
Supplementary files
Review
For citations:
Bondar O.G., Brezhneva E.O., Pushkarev M.D. Method of instantaneous signal synchronization of measuring pulse generators. Izmeritel`naya Tekhnika. 2024;(1):48-55. (In Russ.) https://doi.org/10.32446/0368-1025it.2024-1-48-55