Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Improving the reliability of digital cameras identification by optimizing the noise portraits comparing

https://doi.org/10.32446/0368-1025it.2023-12-26-34

Abstract

The issues of optimization of existing methods for digital camera sensor identification are considered. Ways of improvement of reliability of digital cameras identification is discussed. Homogeneous images were optically recorded to form a noise portrait and test sets of amateur images for 3 cameras of various types. An optimal digital filter was selected to evaluate smoothed images for obtaining noise portraits of identified cameras. Camera identification algorithm was optimized basing on a comparison of light spatial noise portraits. Application of the optimal filter and identity criterion provides an average increase of identification reliability of more than 60 times. The results can be useful in the areas of image registration and processing, security, forensics, big data analysis, etc.

About the Authors

A. V. Kozlov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Alexandr V. Kozlov.

Moscow



N. V. Nikitin
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Nikolay V. Nikitin.

Moscow



V. G. Rodin
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Vladislav G. Rodin.

Moscow



P. A. Cheremkhin
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Pavel A. Cheremkhin.

Moscow



References

1. Fan Y., Li J., Guo Y., Xie L., Zhang G., Measurement, 2021, vol. 171, 108829. https://doi.org/10.1016/j.measurement.2020.108829

2. Jurre van Kesteren, Leandra A. E. van Goudoever, Amara Conteh, Gijs J. D. van Acker, H. Jaap Bonjer, Håkon A. Bolkan, Journal of Surgical Education, 2023, vol. 80, no. 4, pp. 495–498. https://doi.org/10.1016/j.jsurg.2023.01.003

3. Lane B. A., Cardoza R. J., Lessner S. M., Vyavahare N. R., Sutton M. A., Eberth J. F., Journal of the Mechanical Behavior of Biomedical Materials, 2023, vol. 141, 105745. https://doi.org/10.1016/j.jmbbm.2023.105745

4. Putro M. D., Nguyen D.-L., Jo K.-H., IEEE Sensors Journal, 2021, vol. 22, no. 1, pp. 565–574. https://doi.org/10.1109/jsen.2021.3128389

5. Emilsson M., Karlsson C., Svensson A., BMC Health Services Research, 2023, vol. 23, no. 1, 144. https://doi.org/10.1186/s12913-023-09130-2

6. Roshchin D. A., Measurement Techniques, 2021, vol. 64, no. 2, pp. 100–108. https://doi.org/10.1007/s11018-021-01903-7

7. Baguenard B., Bensalah-Ledoux A., Guy L., et al., Nature Communications, 2023, vol. 14, pp. 1065. https://doi.org/10.1038/s41467-023-36782-9

8. Samoilenko M. V., Measurement Techniques, 2023, vol. 66, no. 5, pp. 311–319. https://doi.org/10.1007/s11018-023-02229-2

9. Roshchin D. A., Measurement Techniques, 2022, vol. 65, no. 1, pp. 24–32. https://doi.org/10.1007/s11018-022-02045-0

10. Roshchin D. A. Measurement Techniques, 2022, vol. 65, no. 3, pp. 180–187. https://doi.org/10.1007/s11018-022-02066-9

11. Yu H., Kim Y., Yang D., et al., Nature Communications, 2023, vol. 14, 3534. https://doi.org/10.1038/s41467-023-39329-0

12. Milanfar P., IEEE Signal Processing Magazine, 2012, vol. 30, no. 1, pp. 106–128. https://doi.org/10.1109/msp.2011.2179329

13. Maggioni M., Sánchez-Monge E., Foi A., IEEE Transactions on Image Processing, 2014, vol. 23, no. 10, pp. 4282–4296. https://doi.org/10.1109/tip.2014.2345261

14. Lebrun M., Colom M., Buades A., Morel J. M., Acta Numerica, 2012, vol. 21, pp. 475–576. https://doi.org/10.1017/s0962492912000062

15. Zhang T., Li X., Li J., Xu Z., Sensors, 2020, vol. 20, no. 19, 5567. https://doi.org/10.3390/s20195567

16. Lukas J., Fridrich J., Goljan M., IEEE Transactions on Information Forensics and Security, 2006, vol. 1, no. 2, pp. 205–214. https://doi.org/10.1109/tifs.2006.873602

17. Fridrich J., IEEE Signal Processing Magazine, 2009, vol. 26, no. 2, pp. 26–37. https://doi.org/10.1109/msp.2008.931078

18. Zheng L., Jin G., Xu W., Qu H., Wu Y., IEEE Sensors Journal, 2017, vol. 17, no. 12, pp. 3656–3668. https://doi.org/10.1109/jsen.2017.2696562

19. Zhang Y., Wang G., Xu J., Sensors, 2018, vol. 18, no. 7, 2276. https://doi.org/10.3390/s18072276

20. Jeong B. G., Kim B. C., Moon Y. H., Eom I. K., Signal Processing, 2014, vol. 96, pp. 266–273. https://doi.org/10.1016/j.sigpro.2013.10.002

21. European Machine Vision Association, “EMVA Standard 1288 Standard for Characterization of Image Sensors and Cameras”, available at: https://www.emva.org/standards-technology/emva-1288/emva-standard-1288-downloads-2/ (accessed: Jun 11, 2023).

22. Evtikhiev N. N., Kozlov A. V., Krasnov V. V., Rodin V. G., Starikov R. S., Cheremkhin P. A., Computer Optics, 2021, vol. 45, no. 2, pp. 267–276. https://doi.org/10.18287/2412-6179-CO-815

23. H. Maître, From Photon to Pixel the Digital Camera, Hand-book, Hoboken, NJ, Wiley, 2017, 464 p.

24. Nakamoto K., Hotaka H., Optics Express, 2022, vol. 30, no. 21, 37493. https://doi.org/10.1364/oe.471394

25. Wang Y., Wan B., Fu G., Su Y., IEEE Transactions on Instrumentation and Measurement, 2021, vol. 70, pp. 1–11. https://doi.org/10.1109/tim.2021.3088484

26. Evtikhiev N. N., Kozlov A. V., Krasnov V. V., Rodin V. G., Starikov R. S., Cheremkhin P. A., Measurement techniques, 2021, vol. 64, no. 4, pp. 296–304. https://doi.org/10.1007/s11018-021-01932-2

27. Silva V. D., Chesnokov V., Larkin D., A novel adaptive shading correction algorithm for camera systems, Electronic Proc. IS&T Int’l. Symp. on Electronic Imaging: Digital Photography and Mobile Imaging XII, 2016. https://doi.org/10.2352/issn.2470-1173.2016.18.dpmi-249

28. Young I. T., Gerbrands J. J., van Vliet L. J., Fundamentals of Image Processing, Delft, Delft University of Technology, 2007, 112 p.

29. Gonzalez R. C., Woods R. E., Digital Image Processing, Prentice Hall, 2008, 954 p.

30. Kozlov A. V., Rodin V. G., Starikov R. S., Evtikhiev N. N., Cheremkhin P. A., IEEE Sensors Journal, 2023, vol. 23, no. 5, pp. 4883–4891. https://doi.org/10.1109/JSEN.2023.3238673

31. Fienup J. R., Applied Optics, 1997, vol. 36, no. 32, pp. 8352–8357. https://doi.org/10.1364/AO.36.008352

32. Huynh-Thu Q., Ghanbari M., Electronics letter, 2008, vol. 44. no. 13, pp. 800–801. https://doi.org/10.1049/el:20080522

33. Tounsi Y., Kumar M., NaИСС A., Mendoza-Santoyo F., Matoba O., Applied Optics, 2019, vol. 58, no. 26, pp. 7110–7120. https://doi.org/10.1364/AO.58.007110

34. Katkovnik V., Shevkunov I. A., Petrov N. V., Egiazarian K., Optics Letters, 2015, vol. 40, no. 10. pp. 2417–2420. https://doi.org/`10.1364/OL.40.002417

35. Lim J. S., Two-dimensional signal and image processing, Englewood Cliffs, New Jersey, Prentice Hall, 1990, 694 p.


Supplementary files

Review

For citations:


Kozlov A.V., Nikitin N.V., Rodin V.G., Cheremkhin P.A. Improving the reliability of digital cameras identification by optimizing the noise portraits comparing. Izmeritel`naya Tekhnika. 2023;(12):26-34. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-12-26-34

Views: 190


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)