Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Measurement of phase modulation time dynamics of liquid crystal spatial light modulator

https://doi.org/10.32446/0368-1025it.2023-12-35-39

Abstract

Liquid crystal spatial light modulators for precise dynamic manipulation of coherent light fields, used in diffractive optoelectronic optical data processing systems, are considered. This paper presents the results of a study of the temporal dynamics of the HoloEye PLUTO-2 VIS-016 liquid crystal spatial light modulator for analysis of light fields rate modulation. Experiments using binary phase computer generated holograms and binary focusing phase diffractive optical elements were conducted. Based on experimental data, the time characteristics of the modulator response were determined. It was found that when the rise time of the diffraction efficiency was 146 ms after the hologram displaying onto the SLM, and when switching to a new hologram, the decay time was 97 ms. These results allowed the dynamic generation of an alternating holograms at a refresh rate of 2 Hz with an interference level of –16 dB. Increasing the frequency of fringe pattern updates increases the level of interframe noise in the generated holograms, and when updated at the specification frequency, the generated distributions cannot be separated. Determining the actual frame rate based on the rise and decay times of the diffraction efficiency makes it possible to correctly calculate the minimum operating time of an information optical system containing a liquid crystal spatial light modulator.

About the Authors

T. Z. Minikhanov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Timur Z. Minikhanov.

Moscow



E. Yu. Zlokazov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Evgeniy Yu. Zlokazov.

Moscow



R. S. Starikov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Rostislav S. Starikov.

Moscow



P. A. Cheremkhin
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Pavel A. Cheremkhin.

Moscow



References

1. Zoabi Y., Deri-Rozov S., Shomron, N., NPJ Digital Medicine, 2021, vol. 4, p. 3. https://doi.org/10.1038/s41746-020-00372-6

2. Jiang C., Zhang H., Ren Y., Han Z., Chen K. C., Hanzo L., IEEE Wireless Communications, 2017, vol. 24, pp. 98–105. https://doi.org/10.1109/MWC.2016.1500356WC

3. Wei H., Laszewski M., Kehtarnavaz N., Deep Learning-Based Person Detection and Classification for Far Field Video Surveillance, IEEE 13th Dallas Circuits and Systems Conference (DCAS), Dallas, TX, USA, 2018, pp. 1–4. https://doi.org/10.1109/DCAS.2018.8620111

4. Collobert R., Weston J., Proceeding 25th International Conference on Machine Learning, Helsinki, Finland, July 5–9, 2008, pp. 160–167. https://doi.org/10.1145/1390156.1390177

5. Macfaden A. J., Gordon G. S. D., Wilkinson T. D., Scientific Reports, 2017, vol.7, 13667. https://doi.org/10.1038/s41598-017-13733-1

6. Mario Miscuglio, Zibo Hu, Shurui Li, et al., Optica, 2020, vol. 7, pp. 1812–1819. https://doi.org/10.1364/OPTICA.408659

7. Ping Xu, Chunquan Hong, Guanxiao Cheng, Liang Zhou, Zhilong Sun, Optics Express, 2015, vol. 23, pp. 6773–6779. https://doi.org/10.1364/OE.23.006773

8. Zuo Y., Zhao Y., Chen Y, Du S., Liu J., Physical Review Applied, 2021, vol. 15, 054036. https://doi.org/10.1103/PhysRevApplied.15.054034

9. Long Y., Wang Z., He B., Nie T., Zhang X., Fu T., Sensors, 2022, vol. 19, 7110. https://doi.org/10.3390/s22197110

10. Rahman M., Li J., Mengu D., Rivenson Y., Ozcan A., Light: Science & Applications, 2021, vol. 10, 14. https://doi.org/10.1038/s41377-020-00446-w

11. Shao J., Zhou L., Yeung S. Y. F., Lei T., Zhang W., Yuan X., Life, 2013, vol. 13, no. 5, 1148. https://doi.org/10.3390/life13051148

12. Evtikhiev N. N., Krasnov V. V., Ryabcev I. P., Rodin V. G., Starikov R. S., Cheremkhin P. A., Measurement Techniques, 2021, vol. 64, no. 5, pp. 346–351. https://doi.org/10.1007/s11018-021-01940-2

13. Evtikhiev N., Zlokazov E., Starikov S., Starikov R., Shaulskiy D., Proceeding SPIE, 2010, vol. 7835, 78350M. https://doi.org/10.1117/12.864457

14. Zlokazov E., Methods and algorithms for computer synthesis of holographic elements to obtain a complex impulse response of optical information processing systems based on modern spatial light modulators, Quantum Electronics, 2020, vol. 50, no. 7, pp. 643–652. https://doi.org/10.1070/QEL17291

15. Krasnov V. V., Starikov R. S., Zlokazov E. Yu., Optics and spectroscopy, 2021, vol. 129, no. 4, pp. 511–516. https://doi.org/10.1134/S0030400X21040147

16. Gerchberg R., Saxton W., A practical algorithm for the determination of plane from image and diffraction pictures, Optik, 1972, vol. 2, no. 2, pp. 237–246.

17. Krasnov V., Proceeding SPIE, 2016, vol. 10022, 1002226. https://doi.org/10.1117/12.2246410


Supplementary files

Review

For citations:


Minikhanov T.Z., Zlokazov E.Yu., Starikov R.S., Cheremkhin P.A. Measurement of phase modulation time dynamics of liquid crystal spatial light modulator. Izmeritel`naya Tekhnika. 2023;(12):35-39. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-12-35-39

Views: 255


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)