

An efficient algorithm for areal morphological filter
https://doi.org/10.32446/0368-1025it.2023-12-12-17
Abstract
This article discusses morphological filtering for assessing a areal parameters of a texture of engineering products. A data organization structure has been proposed that makes it possible to increase the efficiency of an iterative algorithm for enumerating a surface coordinates. Morphological filters complement the standard Gaussian filter to evaluate the functional properties of a surface. The widespread use of the areal morphological filtering in metrological practice is currently hampered by the lack of an effective algorithm. An algorithm based on a matrix representation of morphological operations on the surface coordinates is presented. For this purpose, different indexing of points on a primary surface and a structuring element has been introduced. A sphere or flat segment is used as the structuring element. The high performance of the developed algorithm is ensured due to the fact that all calculations are carried out by enumerating the surface coordinates in one pass, without nested loops, as in some other algorithms. Algorithms for morphological operations of dilation and erosion are presented, on the basis of which a closing and opening filters are constructed. Simulations carried out for various data sets and comparison with known morphological filtering algorithms confirmed the high efficiency of the designed algorithm. The results obtained can be used to analyze the functional properties of product surfaces.
About the Authors
S. N. GrigorievRussian Federation
Sergey N. Grigoriev.
Moscow
О. V. Zakharov
Russian Federation
Оleg V. Zakharov.
Saratov
V. G. Lysenko
Russian Federation
Valery G. Lysenko.
Moscow
D. A. Masterenko
Russian Federation
Dmitriy A. Masterenko.
Moscow
References
1. Grigoriev S. N., Teleshevskii V. I., Measurement Techniques, 2011, vol. 54, pp. 744–749. https://doi.org/10.1007/s11018-011-9798-5
2. Grigoriev S. N., Masterenko D. A., Teleshevskii V. I., Emelyanov P. N., Measurement Techniques, 2013, vol. 55, pp. 1311–1315. https://doi.org/10.1007/s11018-013-0126-0
3. Grigoriev S. N., Martinov G. M., Procedia CIRP, 2012, vol. 1, pp. 238–243. https://doi.org/10.1016/j.procir.2012.04.043
4. Grigoriev S. N., Martinov G. M., Procedia CIRP, 2016, vol. 46, pp. 525–528. https://doi.org/10.1016/j.procir.2016.04.036
5. Grigoriev S. N., Masterenko D. A., Skoptsov E. S. The analysis of the measurement information on electrical discharge machined steel surfaces, Izmeritel'naya Tekhnika, 2023, no. 9, pp. 38–45. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-9-38-45
6. Whitehouse D. J., Handbook of Surface and Nanometrology, Second Edition, CRC Press – Taylor & Francis Group, Boca Raton FL, London, 2011.
7. Zakharov O. V., Yakovishin A. S., Zhukov A. V., Application of ISO 16610 series filters for surface structure. Part 3. Profile morphological filters, Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta, 2022, no. 4, pp. 36–49. (In Russ.)
8. Kondo Y., Numada M., Yoshida I., Yamaguchi Y., Machida H., Koshimizu H., Measurement, 2021, vol. 181, 109622. https://doi.org/10.1016/j.measurement.2021.109622
9. Podulka P., Sensors, 2022, vol. 22, 791. https://doi.org/10.3390/s22030791
10. Zakharchenko M. Yu., Kochetkov A. V., Salov P. M., Zakharov O. V., Materials Today: Proceedings, 2021, vol. 38, pp. 1866–1870. https://doi.org/10.1016/j.matpr.2020.08.488
11. Masterenko D. A., Skoptsov E. S., Measurement Techniques, 2020, vol. 62, pp. 953–959. https://doi.org/10.1007/s11018-020-01718-y
12. Yu J., Xiao C., Hua T., Gao Y., ISA Transactions, 2023, vol. 132, pp. 544–556. https://doi.org/10.1016/j.isatra.2022.06.003
13. Srinivasan V., Discrete morphological filters for metrology, Proceedings of the sixth IMEKO ISMQC symposium on metrology for quality control in production, TU Wein, Austria, September 8–10, 1998.
14. Markov B. N., Melikova O. N., Shulepov A. V., Measurement Techniques, 2017, vol. 60, pp. 451–456. https://doi.org/10.1007/s11018-017-1216-1
15. Masterenko D. A. Skoptsov E. S., The method of constructing envelopes during the morphological disk filtration of the surface microprofile, Vestnik TOGU, 2019, no. 4(55), pp. 9–16. (In Russ.)
16. Zakharov О. V., Laptev A. G., Lysenko V. G., Milovanova E. A., Tabachnikova N. A., Measurement Techniques, 2022, vol. 65, pp. 577–583. https://doi.org/10.1007/s11018-023-02123-x
17. Lou S., Jiang X., Scott P. J., Precision Engineering, 2012, vol. 36, pp. 414–423. https://doi.org/10.1016/j.precisioneng.2012.01.003
18. Podulka P., Metrology and Measurement Systems, 2020, vol. 27, pp. 243–263. https://doi.org/10.24425/mms.2020.132772
19. Lou S., Jiang X., Scott P. J., Proceedings of the Royal Society A, 2013, vol. 469, 20130150. https://doi.org/10.1098/rspa.2013.0150
20. Poroshin V. V., Bogomolov D. Y., Poroshin O. V., Lysenko V. G., Measurement Techniques, 2016, vol. 59, pp. 637–643. https://doi.org/10.1007/s11018-016-1023-0
Supplementary files
Review
For citations:
Grigoriev S.N., Zakharov О.V., Lysenko V.G., Masterenko D.A. An efficient algorithm for areal morphological filter. Izmeritel`naya Tekhnika. 2023;(12):12-17. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-12-12-17