

Intelligent intertraverse dynamograph of the mesdoza of sucker-rod deep-pumping units
https://doi.org/10.32446/0368-1025it.2023-10-49-55
Abstract
Rod downhole pumping units widely used in oil production are described. It is shown that oil production depends on the mode of operation of these units, which is selected based on the results of the analysis of closed dynamometer charts. Dynamograms describe the load on the suspension depending on the course of the polished rod of the installation, the quality of the construction of the dynamograms is decisive for diagnosing the technical condition of the installation. The trends in the development of existing dynamometer systems and methods for diagnosing the state of a sucker rod pumping unit are analyzed. One of the ways to create an intelligent intertraverse mesdoza dynamograph based on the mesdoza of a pocket dynamograph using modern pressure, acceleration, temperature sensors, STM32 controllers, a graphic liquid crystal display with an I2C interface, radio communication protocols and digital technologies for processing periodic sensor signals is presented. Based on the analysis of existing dynamometer systems and force and stroke sensors installed in various places of the installation design, and taking into account modern advances in technology and technologies for analyzing the noise of the measured signals, the possibility of developing an intelligent stationary dynamograph is shown. This dynamograph must provide early diagnostics of the technical condition of the installation and meet the following criteria: low cost; ease of installation; high sensitivity, reliability, flexibility and accuracy. A block diagram of an intelligent intertraverse dynamograph of the mesdoza of a sucker-rod deep pumping unit, based on the mesdoza of a pocket dynamograph, is presented. The proposed intelligent intertraverse dynamograph will be useful for early diagnostics of the technical condition of downhole pumps and tubing pipes connecting them with ground equipment, which will ultimately help to improve the reliability of oil production equipment. The proposed intelligent intertraverse dynamograph can also be used in other areas of technology where there is a need to measure force.
About the Authors
A. H. RzayevAzerbaijan
Asif H. Rzayev
Baku
Ya. G. Aliyev
Azerbaijan
Yaver G. Aliyev
Baku
M. H. Rezvan
Azerbaijan
Mahammad H. Rezvan
Baku
References
1. Lao L. M., Zhou H., Application and effect of buoyancy on sucker rod string dynamics, Journal of Petroleum Science and Engineering, 2016, vol. 146, pp. 264–271. https://doi.org/10.1016/j.petrol.2016.04.029
2. Wang D. Y., Zhao L. H., Shock and Vibration, vol. 2018, pp. 1–10. https://doi.org/10.1155/2018/4979405
3. Liang W., Yu X. C., Zhang L. B., Lu W. Q., Mechanical Systems and Signal Processing, 2018, vol. 104, pp. 224–241. https://doi.org/10.1016/j.ymssp.2017.10.018
4. Zheng B. Y., Gao X. W., Li X. Y., Journal of Process Control, 2019, vol. 77, pp. 76–88. https://doi.org/10.1016/j.jprocont.2019.02.008
5. Aliev T. A., Nusratov O. G., Guluev G. A. et al., Measurement Techniques, 2018, vol. 61, no. 9, pp. 885–890. https://doi.org/10.1007/s11018-018-1519-x
6. Lv H. Q., Liu J., Han J. Q., Jiang A., Sensors, 2016, vol. 16, no. 5, pp. 1–13. https://doi.org/10.3390/s16050685
7. Xing M. M., Dong S. M., SPE Production & Operations, 2015, vol. 30, no. 2, pp. 130–140. https://doi.org/10.2118/173190-PA
8. Aliev T. A., Guluyev G. A., Rzayev As. H., Pashayev F. H., Sattarov I. R., Kazimov N. G., Azerbaijan oil industry, 2012, no. 1, pp. 54–59. (In Russ.)
9. Aliev T. A., Iskenderov D. A., Guluyev G. A., Rzayev As. H., Rezvan M. G., Azerbaijan oil industry, 2014, no. 6, pp. 37–41. (In Russ.)
10. Aliyev T. A., Nusratov O. G., Guluyev G. A., Rzayev As. G., Pashayev F. G. Patent RU 021804 B1, Bull. of the Eurasian Patent Organization, no. 9 (2015).
11. Aliev T. A., Rzayev As. H., Guluyev G. A., Alizade T. A., Sattarova U. E., Rzayeva N. E., Technology for the noise control of oil wells by wattmeter card of the electric motor of sucker rod pumping units, Mekhatronika, Avtomatizatsiya, Upravlenie, 2015, no. 10, pp. 686– 698. (In Russ.) https://doi.org/10.17587/mau.16.686-698
12. Aliev T. A., Rzayev As. H., Guluyev G. A., Alizada T. A., Rzayeva N. E., Mechanical Systems and Signal Processing, 2018, no. 99, pp. 47–56. https://doi.org/10.1016/j.ymssp.2017.06.010
13. Rzayev As. H., Aliyev Y. G., Rezvan M. H., Khakimyanov M. Proceedings International Conference on Electrotechnical Complexes and Systems (ICOECS), Ufa, Russia, October 27–30, 2020, Ufa State Aviation Technical University, 2020, pp. 13–17.
14. Virnovskiy A. S., Teoriya i praktika glubinnonasosnoy dobychi nefti, Moscow, Nedra Publ., 1971, 183 p. (In Russ.)
15. Neely A. B., Gibbs S. G., Journal of Petroleum Technology, 1966, no. 18(01), рр. 91–98. https://doi.org/10.2118/1165-PA
16. Andreev V. V., Urazakov K. R., Dalimov V. U. et al., Spravochnik po dobyche nefti, ed. Urazakova K. R., Moscow, NedraBiznescent Publ., 2000, 374 p. (In Russ.)
17. Abdullaev A. A., Dzhavadov A. A., Levin A. A. et al., Telemehanicheskie kompleksy dlja neftjanoj promyshlennosti, Moscow, Nedra Publ., 1982, 200 p. (In Russ.)
18. Urazakov K. R., Andreev V. V., Zhulaev V. P., Neftepromyslovoye oborudovaniye dlya kustovykh skvazhin, Moscow, Nedra Publ., 1999. pp. 80–81. (In Russ.)
19. Mamedov F. I., Dadasheva R. B., Two dimensional electromagnetic transducers of movements, Journal of Instrument Engineering, 2005, no. 5, pp. 38–41. (In Russ.)
20. Zhuk E., Shimchak Р., Sistema Lufkin Automation kontroliruyet rabotu skvazhin v Belarusi, Neft’ i gaz Evrazija, 2006, no. 8, pp. 16–27. (In Russ.)
21. Kovshov V. D., Yemets S. V., Khakim’yanov M. I., Svetlakova S. V., Datchiki usiliya dlya sistem dinamometrirovaniya shtangovykh glubinnykh nasosov dobychi nefti, Elektronnyy nauchnyy zhurnal Neftegazovoye delo, 2007, no. 1, р. 80. (In Russ.)
22. Gibbs S. G., US Patent US3343409A (26 September 1967).
23. Rzaev As. G., The intelligent of an intertraverse force sensor, Izvestija NANA, serija fiziko-tehnicheskih i matematicheskih nauk, 2012, no. 3, pp. 158–164. (In Russ.)
24. Aliev T. A., Abbasov A. M., Guluev G. A., Rzaev As. G., Pashaev F. G., Automatic Control and Computer Sciences, 2009, vol. 43, no. 3, pp. 156–165. https://doi.org/10.3103/S0146411609030067
25. Aliev T. A., Guluev G. A., Rzaev As. G., Pashaev F. G., Korrelyatsionnyye indikatory mikroizmeneniy v tekhnicheskikh sostoyaniyakh ob’yektov kontrolya, Kibernetika i sistemnyj analiz, 2009, no. 4. pp. 169–178. (In Russ.)
Review
For citations:
Rzayev A.H., Aliyev Ya.G., Rezvan M.H. Intelligent intertraverse dynamograph of the mesdoza of sucker-rod deep-pumping units. Izmeritel`naya Tekhnika. 2023;(10):49-55. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-10-49-55