

State primary special standard of the unit of heat quantity in the fi eld of solution and reaction calorimetry GET 133-2023
https://doi.org/10.32446/0368-1025it.2023-9-11-17
Abstract
The article shows the need to develop methods and tools for realization and transferring a unit of heat quantity in the fi eld of measuring small thermal effects of physical and chemical interactions by the method of isothermal titration calorimetry. The relevance of the work is due to the wide application of measuring instruments implementing this method and the lack of standardized metrological procedures and tools. To solve the problem of ensuring unity and traceability of measurements in this fi eld, VNIIM calorimetry laboratory conducted research to expand the functional and measuring capabilities of the State primary special standard of the unit of heat quantity in the fi eld of solution and reaction calorimetry GET 133-2012. In the course of work a reference titration microcalorimeter MKT was developed, investigated, and included in the GET 133-2012. Microcalorimeter MKT was designed to realize, store, and transfer a unit of heat quantity in the fi eld of measuring small thermal effects in liquid media. As a result of microcalorimeter studies, the capability of realizing and transferring a unit of heat quantity in a new range was confi rmed: from 100 to 5000 μJ with an expanded uncertainty from 1.2 to 8.6 %. The improved GET 133-2012 with an updated composition and new metrological characteristics was approved as the State primary special standard of the unit of heat quantity in the fi eld of solution and reaction calorimetry GET 133-2023. This lays the foundations for the creation of new metrological tools and procedures for transferring the unit of heat quantity in the fi eld of solution and reaction calorimetry.
About the Authors
K. A. MishinaRussian Federation
Karina A. Mishina
St. Petersburg
E. N. Korchagina
Russian Federation
Elena N. Korchagina
St. Petersburg
Ia. V. Kazartsev
Russian Federation
Iaroslav V. Kazartsev
St. Petersburg
References
1. Kabiri M., Unsworth L. D. Biomacromolecules, 2014, vol. 15, no. 10, pp. 3463–3473. https://doi.org/10.1021/bm5004515
2. Falconer R. J., Penkova A., Jelesarov I., Collins B. M. J. Mol. Recognit. 2010, vol. 23, no. 5, pp. 395–413. https://doi.org/10.1002/jmr.1025
3. Falconer R. J., Collins B. M., J. Mol. Recognit. 2011, vol. 24, no. 1, pp. 1–16. https://doi.org/10.1002/jmr.1073
4. Baranauskiene L., Petrikaite V., Matuliene J., Daumantas M. Int. J. Mol. Sci. 2009, vol. 10, no. 6, pp. 2752–2762. https://doi.org/10.3390/ijms10062752
5. Paketurytė V., Linkuvienė V., Krainer G., Chen W-Y., Daumantas M. Eur. Biophys. J. 2019, vol. 48, pp. 139–152. https://doi.org/10.1007/s00249-018-1341-z
6. Myszka D. G., Abdiche Y. N., Arisaka F. et al. The ABRFMIRG’02 Study: Assembly State, Thermodynamic, and Kinetic Analysis of an Enzyme/Inhibitor Interaction, Journal of Biomolecular Techniques, 2003, vol. 14, no. 4, pp. 247–269.
7. Velazquez-Campoy A., Claro B., Abian O. et al. Eur. Biophys. J. 2021, vol. 50, pp. 429–451. https://doi.org/10.1007/s00249-021-01523-7
8. Demarse N. A., Quinn C. F., Eggett D. L. et al. Anal. Biochem. 2011, vol. 417, iss. 2, pp. 247–255. https://doi.org/10.1016/j.ab.2011.06.014
9. Adao R., Bai G., Loh W., Bastos M., J. Chem. Thermodynamics, 2012, vol. 52, pp. 57–63. https://doi.org/10.1016/j.jct.2011.12.018
10. Wadso I., Goldberg R.N., Pure and Appl. Chem., 2001, vol. 73, no. 10, pp. 1625–1639. https://doi.org/10.1351/pac200173101625
11. Kantonen S. A., Henriksen N. M., Gilson M. K. Biochimica et Biophysica Acta, 2017, vol. 1861, iss. 2, pp. 485–498. https://doi.org/10.1016/j.bbagen.2016.09.002
12. Nguyen T. H., Rustenburg A. S., Krimmer S. G. et al. PLOS ONE, 2018, vol. 13, no. 9, pp. 1–26. https://doi.org/10.1371/journal.pone.0203224
13. Hansen L. D., Quinn C. European Biophysics Journal, 2019, vol. 48, pp. 825–835. https://doi.org/10.1007/s00249-019-01399-8
14. Tellinghuisen J., Chodera J. D. Analytical Biochemistry, 2011, vol. 414, iss. 2, pp. 297–299. https://doi.org/10.1016/j.ab.2011.03.024
15. Medoš Ž., Cobanov I., Bester-Rogac M., Sarac B. Journal of Thermal Analysis and Calorimetry, 2021, vol. 145, pp. 87–96. https://doi.org/10.1007/s10973-020-09663-2
16. Колесов В. П. Основы термохимии, М.: Изд-во МГУ, 1996. 205 с. [Kolesov V. P. Osnovy termokhimii [Fundamentals of Thermochemistry], Moscow, MSU Publ., 1996, 205 p. (In Russ.)]
17. JCGM 100:2008. Evaluation of measurement data – Guide to the expression of uncertainty in measurement. First edition. JCGM, 2008, 134 p.
18. Christensen J. J., Hansen L. D., Izatt R. M. Handbook of Proton Ionizations Heats, WileyInterscience, 1976, 269 p.
19. Mishina K. A. Measurement Standards. Reference Material., 2023, vol. 19, no. 3, pp. 31–43 (In Russ.)] https://doi.org/10.20915/2077-1177-2023-19-3-31-43
Review
For citations:
Mishina K.A., Korchagina E.N., Kazartsev I.V. State primary special standard of the unit of heat quantity in the fi eld of solution and reaction calorimetry GET 133-2023. Izmeritel`naya Tekhnika. 2023;(9):11-17. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-9-11-17