Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

State primary special standard of the unit of heat quantity in the fi eld of solution and reaction calorimetry GET 133-2023

https://doi.org/10.32446/0368-1025it.2023-9-11-17

Abstract

The article shows the need to develop methods and tools for realization and transferring a unit of heat quantity in the fi eld of measuring small thermal effects of physical and chemical interactions  by the method of isothermal titration calorimetry. The relevance of the work is due to the wide application of measuring instruments implementing this method and the lack of standardized metrological procedures and tools. To solve the problem of ensuring unity and traceability of measurements in this fi eld, VNIIM calorimetry laboratory conducted research to expand the functional and measuring capabilities of the State primary special standard of the unit of heat quantity in the fi eld of solution and reaction calorimetry GET 133-2012. In the course of work a reference titration microcalorimeter MKT was developed, investigated, and included in the GET 133-2012. Microcalorimeter MKT was designed to realize, store, and transfer a unit of heat quantity in the fi eld of measuring small thermal effects in liquid media. As a result of microcalorimeter studies, the capability of realizing and transferring a unit of heat quantity in a new range was confi rmed: from 100 to 5000 μJ with an expanded uncertainty from 1.2 to 8.6 %. The improved GET 133-2012 with an updated composition and new metrological characteristics was approved as the State primary special standard of the unit of heat quantity in the fi eld of solution and reaction calorimetry GET 133-2023. This lays the foundations for the creation of new metrological tools and procedures for transferring the unit of heat quantity in the fi eld of solution and reaction calorimetry.

About the Authors

K. A. Mishina
D. I. Mendeleev Institute for Metrology
Russian Federation

Karina A. Mishina

St. Petersburg



E. N. Korchagina
D. I. Mendeleev Institute for Metrology
Russian Federation

Elena N. Korchagina

St. Petersburg



Ia. V. Kazartsev
D. I. Mendeleev Institute for Metrology
Russian Federation

Iaroslav V. Kazartsev

St. Petersburg



References

1. Kabiri M., Unsworth L. D. Biomacromolecules, 2014, vol. 15, no. 10, pp. 3463–3473. https://doi.org/10.1021/bm5004515

2. Falconer R. J., Penkova A., Jelesarov I., Collins B. M. J. Mol. Recognit. 2010, vol. 23, no. 5, pp. 395–413. https://doi.org/10.1002/jmr.1025

3. Falconer R. J., Collins B. M., J. Mol. Recognit. 2011, vol. 24, no. 1, pp. 1–16. https://doi.org/10.1002/jmr.1073

4. Baranauskiene L., Petrikaite V., Matuliene J., Daumantas M. Int. J. Mol. Sci. 2009, vol. 10, no. 6, pp. 2752–2762. https://doi.org/10.3390/ijms10062752

5. Paketurytė V., Linkuvienė V., Krainer G., Chen W-Y., Daumantas M. Eur. Biophys. J. 2019, vol. 48, pp. 139–152. https://doi.org/10.1007/s00249-018-1341-z

6. Myszka D. G., Abdiche Y. N., Arisaka F. et al. The ABRFMIRG’02 Study: Assembly State, Thermodynamic, and Kinetic Analysis of an Enzyme/Inhibitor Interaction, Journal of Biomolecular Techniques, 2003, vol. 14, no. 4, pp. 247–269.

7. Velazquez-Campoy A., Claro B., Abian O. et al. Eur. Biophys. J. 2021, vol. 50, pp. 429–451. https://doi.org/10.1007/s00249-021-01523-7

8. Demarse N. A., Quinn C. F., Eggett D. L. et al. Anal. Biochem. 2011, vol. 417, iss. 2, pp. 247–255. https://doi.org/10.1016/j.ab.2011.06.014

9. Adao R., Bai G., Loh W., Bastos M., J. Chem. Thermodynamics, 2012, vol. 52, pp. 57–63. https://doi.org/10.1016/j.jct.2011.12.018

10. Wadso I., Goldberg R.N., Pure and Appl. Chem., 2001, vol. 73, no. 10, pp. 1625–1639. https://doi.org/10.1351/pac200173101625

11. Kantonen S. A., Henriksen N. M., Gilson M. K. Biochimica et Biophysica Acta, 2017, vol. 1861, iss. 2, pp. 485–498. https://doi.org/10.1016/j.bbagen.2016.09.002

12. Nguyen T. H., Rustenburg A. S., Krimmer S. G. et al. PLOS ONE, 2018, vol. 13, no. 9, pp. 1–26. https://doi.org/10.1371/journal.pone.0203224

13. Hansen L. D., Quinn C. European Biophysics Journal, 2019, vol. 48, pp. 825–835. https://doi.org/10.1007/s00249-019-01399-8

14. Tellinghuisen J., Chodera J. D. Analytical Biochemistry, 2011, vol. 414, iss. 2, pp. 297–299. https://doi.org/10.1016/j.ab.2011.03.024

15. Medoš Ž., Cobanov I., Bester-Rogac M., Sarac B. Journal of Thermal Analysis and Calorimetry, 2021, vol. 145, pp. 87–96. https://doi.org/10.1007/s10973-020-09663-2

16. Колесов В. П. Основы термохимии, М.: Изд-во МГУ, 1996. 205 с. [Kolesov V. P. Osnovy termokhimii [Fundamentals of Thermochemistry], Moscow, MSU Publ., 1996, 205 p. (In Russ.)]

17. JCGM 100:2008. Evaluation of measurement data – Guide to the expression of uncertainty in measurement. First edition. JCGM, 2008, 134 p.

18. Christensen J. J., Hansen L. D., Izatt R. M. Handbook of Proton Ionizations Heats, WileyInterscience, 1976, 269 p.

19. Mishina K. A. Measurement Standards. Reference Material., 2023, vol. 19, no. 3, pp. 31–43 (In Russ.)] https://doi.org/10.20915/2077-1177-2023-19-3-31-43


Review

For citations:


Mishina K.A., Korchagina E.N., Kazartsev I.V. State primary special standard of the unit of heat quantity in the fi eld of solution and reaction calorimetry GET 133-2023. Izmeritel`naya Tekhnika. 2023;(9):11-17. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-9-11-17

Views: 214


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)