Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

State primary standard of the unit of overpressure in the range of static pressure from 10 to 1600 MPa and in the range of impulse pressure

https://doi.org/10.32446/0368-1025it.2023-9-4-10

Abstract

The necessity and relevance of precision pulse pressure measurements in industry (high-speed technological processes) and transport (existing and new types of engines) is shown. The device, the principle of operation and the result of metrological studies of the State Primary Standard of the unit of overpressure in the range of static pressure from 10 to 1600 MPa and in the range of pulse pressure from 1 to 1200 MPa and the effective area of piston pairs of piston pressure gauges in the range from 0.05 to 1 cm2 GET 43-2022 are presented. The GET 43-2022 includes hydraulic and pneumatic installations, as well as an ultra-high pressure valve designed to compare installations from the GET 43-2022 composition working with different standard fl uids in the range of 250-1200 MPa. The reproduction range of the pulse pressure unit GET 43-2022 is 1-1200 MPa. The method of reproducing the pulse pressure unit in liquid and gas media using hydraulic and pneumatic installations is described. The metrological characteristics of GET 43-2022 are investigated, the budget of measurement uncertainty is calculated when reproducing the pulse pressure unit. The results obtained make it possible to meet the needs of the development of a fl eet of working standards for pulse pressure measuring instruments traceable to GET 43-2022.

About the Authors

S. M. Gavrilkin
Russian Metrological Institute of Technical Physics and Radio Engineering
Russian Federation

Sergey M. Gavrilkin

Mendeleevo, Moscow region



V. M. Borovkov
Russian Metrological Institute of Technical Physics and Radio Engineering
Russian Federation

Vladimir M. Borovkov

Mendeleevo, Moscow region



A. E. Aslanyan
Russian Metrological Institute of Technical Physics and Radio Engineering
Russian Federation

Andrey E. Aslanyan

Mendeleevo, Moscow region



I. N. Temnitskii
Russian Metrological Institute of Technical Physics and Radio Engineering
Russian Federation

Igor N. Temnitskii

Mendeleevo, Moscow region



A. O. Fedorov
Russian Metrological Institute of Technical Physics and Radio Engineering
Russian Federation

Alexander O. Fedorov

Mendeleevo, Moscow region



L. V. Yurov
Russian Metrological Institute of Technical Physics and Radio Engineering
Russian Federation

Lev V. Yurov

Mendeleevo, Moscow region



E. G. Aslanyan
Russian Metrological Institute of Technical Physics and Radio Engineering
Russian Federation

Eduard G. Aslanyan

Mendeleevo, Moscow region



V. V. Shvydun
Russian Metrological Institute of Technical Physics and Radio Engineering
Russian Federation

Vladimir V. Shvydun

Mendeleevo, Moscow region



A. N. Shchipunov
Russian Metrological Institute of Technical Physics and Radio Engineering
Russian Federation

Andrey N. Shchipunov

Mendeleevo, Moscow region



References

1. Gaydon A. G., Hurle I. R. The shock tube in high-temperature chemical physics, Reinhold Publishing Corporation, 1963, 307 p.

2. Takayama K. Annual Review of Fluid Mechanics, 2004, vol. 36, no. 1, pp. 347–379. https://doi.org/10.1146/annurev.fluid.36.050802.121954

3. Mohankumar P., Ajayan J., Yasodharan R., Devendran P. and Sambasivam R. Measurement, 2019, vol. 140, pp. 305–322. https://doi.org/10.1016/j.measurement.2019.03.064

4. Syrimis M., Assanis D. N. Journal of Engineering for Gas Turbines and Power, 2003, vol. 125, pp. 494–499. https://doi.org/10.1115/1.1560709

5. Gnani F., Zare-Behtash H., Knotis K. Progress in Aerospace Sciences, 2016, vol. 82, pp. 36–56. https://doi.org/10.1016/j.paerosci.2016.02.001

6. He Y., Huang H., Yu D. Aerospace Science and Technology, 2016, vol. 56, pp. 1–13. https://doi.org/10.1016/j.ast.2016.04.016

7. Viji M., Vikramaditya N. S., Verma S. B., Ali N., Thakur D. N. Aerospace Science and Technology, 2017, vol. 71, pp. 695–705. https://doi.org/10.1016/j.ast.2017.10.021

8. Farahani M., Daliri A., Younsi J. Aerospace Science and Technology, 2019, vol. 86, pp. 782–793. https://doi.org/10.1016/j.ast.2019.02.002

9. Svete A. and Kutin J. Metrologia, 2020, vol. 57, no. 5. https://doi.org/10.1088/1681-7575/ab8f79

10. Yao Z., Liu X., Wang C. and Yang W. Aerospace Science and Technology, 2020, vol. 107, 106302. https://doi.org/10.1016/j.ast.2020.106302

11. In-Mook Choi, Tae-Heon Yang, Han-Wook Song, Seung-Soo Hong and Sam-Yong Woo. High dynamic pressure standard using a step pressure generator, 20th IMEKO World Congress 2012 (3 vols), Held 9–14 September 2012, Busan, Republic of Korea, International Measurement Confederation (IMEKO), 2013, vol. 3, pp. 1606–1609.

12. Borovkov V. M., Kuznetsov D. I., Sekoyan S. S., Shchipunov A. N., Aslanyan A. E., Gavrilkin S. M. Measurement Techniques, 2015, vol. 57, no. 11, pp. 1233–1237. https://doi.org/10.1007/s11018-015-0611-8

13. Issledovanija v oblasti vysokih davlenij, ed. by Zolotyh E. V., Moscow, Izdatelstvo Standartov Publ., 1987, 304 p. (In Russ.)

14. Aslanyan A. E., Measurement Techniques, 2021, vol. 63, no. 10, pp. 811–815. https://doi.org/10.1007/s11018-021-01857-w

15. Borovkov V. M. Al’manac of Modern Metrology, 2019, no. 1, pp. 109–115. (In Russ.)

16. Aslanyan A. E. Prikladnaja fi zika, 2020, no. 4, pp. 85–91. (In Russ.)

17. Aslanyan A. E. Al’manac of Modern Metrology, 2021, no. 1, pp. 67–71. (In Russ.)

18. Gavrilkin S. M., Temnickij I. N., Jur’ev B. V., Shhipunov A. N., Avdeenko O. V. Al’manac of Modern Metrology, 2015, no. 5, pp. 21– 32. (In Russ.)

19. Gavrilkin S. M., Temnickij I. N., Jur’ev B. V., Avdeenko O. V., Sorokina P. V. Pribory, 2016, no. 10(196), pp. 28–30. (In Russ.)

20. Janardhanraj S., Karthick S. K., Farooq A. Progress in Energy and Combustion Science, 2022, vol. 93, 101042. https://doi.org/10.1016/j.pecs.2022.101042


Review

For citations:


Gavrilkin S.M., Borovkov V.M., Aslanyan A.E., Temnitskii I.N., Fedorov A.O., Yurov L.V., Aslanyan E.G., Shvydun V.V., Shchipunov A.N. State primary standard of the unit of overpressure in the range of static pressure from 10 to 1600 MPa and in the range of impulse pressure. Izmeritel`naya Tekhnika. 2023;(9):4-10. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-9-4-10

Views: 300


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)