

State primary standard of the unit of overpressure in the range of static pressure from 10 to 1600 MPa and in the range of impulse pressure
https://doi.org/10.32446/0368-1025it.2023-9-4-10
Abstract
The necessity and relevance of precision pulse pressure measurements in industry (high-speed technological processes) and transport (existing and new types of engines) is shown. The device, the principle of operation and the result of metrological studies of the State Primary Standard of the unit of overpressure in the range of static pressure from 10 to 1600 MPa and in the range of pulse pressure from 1 to 1200 MPa and the effective area of piston pairs of piston pressure gauges in the range from 0.05 to 1 cm2 GET 43-2022 are presented. The GET 43-2022 includes hydraulic and pneumatic installations, as well as an ultra-high pressure valve designed to compare installations from the GET 43-2022 composition working with different standard fl uids in the range of 250-1200 MPa. The reproduction range of the pulse pressure unit GET 43-2022 is 1-1200 MPa. The method of reproducing the pulse pressure unit in liquid and gas media using hydraulic and pneumatic installations is described. The metrological characteristics of GET 43-2022 are investigated, the budget of measurement uncertainty is calculated when reproducing the pulse pressure unit. The results obtained make it possible to meet the needs of the development of a fl eet of working standards for pulse pressure measuring instruments traceable to GET 43-2022.
About the Authors
S. M. GavrilkinRussian Federation
Sergey M. Gavrilkin
Mendeleevo, Moscow region
V. M. Borovkov
Russian Federation
Vladimir M. Borovkov
Mendeleevo, Moscow region
A. E. Aslanyan
Russian Federation
Andrey E. Aslanyan
Mendeleevo, Moscow region
I. N. Temnitskii
Russian Federation
Igor N. Temnitskii
Mendeleevo, Moscow region
A. O. Fedorov
Russian Federation
Alexander O. Fedorov
Mendeleevo, Moscow region
L. V. Yurov
Russian Federation
Lev V. Yurov
Mendeleevo, Moscow region
E. G. Aslanyan
Russian Federation
Eduard G. Aslanyan
Mendeleevo, Moscow region
V. V. Shvydun
Russian Federation
Vladimir V. Shvydun
Mendeleevo, Moscow region
A. N. Shchipunov
Russian Federation
Andrey N. Shchipunov
Mendeleevo, Moscow region
References
1. Gaydon A. G., Hurle I. R. The shock tube in high-temperature chemical physics, Reinhold Publishing Corporation, 1963, 307 p.
2. Takayama K. Annual Review of Fluid Mechanics, 2004, vol. 36, no. 1, pp. 347–379. https://doi.org/10.1146/annurev.fluid.36.050802.121954
3. Mohankumar P., Ajayan J., Yasodharan R., Devendran P. and Sambasivam R. Measurement, 2019, vol. 140, pp. 305–322. https://doi.org/10.1016/j.measurement.2019.03.064
4. Syrimis M., Assanis D. N. Journal of Engineering for Gas Turbines and Power, 2003, vol. 125, pp. 494–499. https://doi.org/10.1115/1.1560709
5. Gnani F., Zare-Behtash H., Knotis K. Progress in Aerospace Sciences, 2016, vol. 82, pp. 36–56. https://doi.org/10.1016/j.paerosci.2016.02.001
6. He Y., Huang H., Yu D. Aerospace Science and Technology, 2016, vol. 56, pp. 1–13. https://doi.org/10.1016/j.ast.2016.04.016
7. Viji M., Vikramaditya N. S., Verma S. B., Ali N., Thakur D. N. Aerospace Science and Technology, 2017, vol. 71, pp. 695–705. https://doi.org/10.1016/j.ast.2017.10.021
8. Farahani M., Daliri A., Younsi J. Aerospace Science and Technology, 2019, vol. 86, pp. 782–793. https://doi.org/10.1016/j.ast.2019.02.002
9. Svete A. and Kutin J. Metrologia, 2020, vol. 57, no. 5. https://doi.org/10.1088/1681-7575/ab8f79
10. Yao Z., Liu X., Wang C. and Yang W. Aerospace Science and Technology, 2020, vol. 107, 106302. https://doi.org/10.1016/j.ast.2020.106302
11. In-Mook Choi, Tae-Heon Yang, Han-Wook Song, Seung-Soo Hong and Sam-Yong Woo. High dynamic pressure standard using a step pressure generator, 20th IMEKO World Congress 2012 (3 vols), Held 9–14 September 2012, Busan, Republic of Korea, International Measurement Confederation (IMEKO), 2013, vol. 3, pp. 1606–1609.
12. Borovkov V. M., Kuznetsov D. I., Sekoyan S. S., Shchipunov A. N., Aslanyan A. E., Gavrilkin S. M. Measurement Techniques, 2015, vol. 57, no. 11, pp. 1233–1237. https://doi.org/10.1007/s11018-015-0611-8
13. Issledovanija v oblasti vysokih davlenij, ed. by Zolotyh E. V., Moscow, Izdatelstvo Standartov Publ., 1987, 304 p. (In Russ.)
14. Aslanyan A. E., Measurement Techniques, 2021, vol. 63, no. 10, pp. 811–815. https://doi.org/10.1007/s11018-021-01857-w
15. Borovkov V. M. Al’manac of Modern Metrology, 2019, no. 1, pp. 109–115. (In Russ.)
16. Aslanyan A. E. Prikladnaja fi zika, 2020, no. 4, pp. 85–91. (In Russ.)
17. Aslanyan A. E. Al’manac of Modern Metrology, 2021, no. 1, pp. 67–71. (In Russ.)
18. Gavrilkin S. M., Temnickij I. N., Jur’ev B. V., Shhipunov A. N., Avdeenko O. V. Al’manac of Modern Metrology, 2015, no. 5, pp. 21– 32. (In Russ.)
19. Gavrilkin S. M., Temnickij I. N., Jur’ev B. V., Avdeenko O. V., Sorokina P. V. Pribory, 2016, no. 10(196), pp. 28–30. (In Russ.)
20. Janardhanraj S., Karthick S. K., Farooq A. Progress in Energy and Combustion Science, 2022, vol. 93, 101042. https://doi.org/10.1016/j.pecs.2022.101042
Review
For citations:
Gavrilkin S.M., Borovkov V.M., Aslanyan A.E., Temnitskii I.N., Fedorov A.O., Yurov L.V., Aslanyan E.G., Shvydun V.V., Shchipunov A.N. State primary standard of the unit of overpressure in the range of static pressure from 10 to 1600 MPa and in the range of impulse pressure. Izmeritel`naya Tekhnika. 2023;(9):4-10. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-9-4-10