Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Measurement of the intensity of high frequency electric field: application of ring waveguide with two slots filled with electro-optic polymer

https://doi.org/10.32446/0368-1025it.2021-12-56-61

Abstract

The possibility of increasing the sensitivity of measurement transducer of the high frequency external electric field is analyzed. The increasing is possible by using the ring waveguides with two vertical and horizontal slots filled with electro-optic polymer. The structure of the measurement transducer is considered. In waveguides with two slots the intensity of propagating optical radiation in the slot region is higher than in single slot waveguides. The values of optimal slot width and separation are determined, which make it possible to achieve the maximal transducer sensitivity. The measurement transducer allows measuring the alternating electric fields with the frequency from 0 to 10 GHz in the range from 150 to 16·106 V/m with the resolution up to 150 V/m due to using the active organic polymer SEO125 and double slot waveguide. The measurement transducer can be applied for detecting the high-frequency waves electromagnetic pulses, analyses of external electromagnetic interference and diagnosis of high-frequency electronic circuits.

About the Authors

I. A. Goncharenko
University of Civil Protection of the Ministry for Emergency Situations of the Republic of Belarus
Belarus

Igor A. Goncharenko

Minsk



V. N. Reabtsev
University of Civil Protection of the Ministry for Emergency Situations of the Republic of Belarus
Belarus

Vitaly N. Reabtsev

Minsk



References

1. Bieler M., Hein G., Pierz K., Siegner U., Koch M., Applied Physics Letters, 2005, vol. 87, no. 4, pp. 042102–042104. https://doi.org/10.1063/1.2000333

2. Chunyang Han, Fangxing Lv, Chen Sun, and Hui Ding, Optics Letters, 2015, vol. 40, no. 16, pp. 3683–3686. https://doi.org/10.1364/OL.40.003683

3. Pfeifer T., Heiliger H.-M., Loffl er T., Ohlhoff C., Meyer C., Lupke G., Roskos H. G., Kurz H., IEEE Journal of Selected Topics in Quantum Electronics, 1996, vol. 2, no. 3, pp. 586–604. https://doi.org/10.1109/2944.571758

4. Bottauscio O., Chiampi M., Crotti G., Giordano D., Wang W., Zilberti L., IEEE Transactions on Instrumentation and Measurement, 2013, vol. 62, no. 1, pp. 1436–1442. https://doi.org/10.1109/TIM.2012.2230812

5. Passaro V. M. N., Dell’Olio F., De Leonardis F., Progress in Quantum Electronics, 2006, vol. 30, no. 2–3, pp. 45–73. https://doi.org/10.1016/j.pquantelec.2006.08.001

6. Ilchenko V. S., Savchenkov A. A., Matsko A. B., Maleki L., IEEE Photonics Technology Letters, 2002, vol. 14, no. 11, pp. 1602– 1604. https://doi.org/10.1109/LPT.2002.803916

7. Yong Zhao, Ya-nan Zhang, Ri-qing Lv, Jin Li, Journal of Lightwave Technology, 2017, vol. 35, no. 16, pp. 3440–3446. https://doi.org/10.1109/JLT.2016.2576500

8. Musab A. M. Al-Tarawni, A. Ashrif A. Bakar, Ahmad Rifqi Md Zain, Mou’ad A. Tarawneh, Sahrim Hj. Ahmad, Optical Engineering, 2017, vol. 56, no. 10, 107105. https://doi.org/10.1117/1.OE.56.10.107105

9. Zhang X., Hosseini A., Subbaraman H., Wang S., Zhan Q., Luo J., Jen A. K.-Y., Chen R. T., Journal of Lightwave Technology, 2014, vol. 32, no. 20, pp. 3774–3784. https://doi.org/10.1109/JLT.2014.2319152

10. Zhang J., Chen F., Sun B., IEEE Photonics Technology Letters, 2014, vol. 26, no. 3, pp. 275–277. https://doi.org/10.1109/LPT.2013.2292567

11. Park D. H., Pagan V. R., Murphy T. E., Luo J., Jen A. K.-Y., Herman W. N., Optics Express, 2015, vol. 23, no. 7, pp. 9464– 9476. https://doi.org/10.1364/OE.23.009464

12. Tajima K., Kobayashi R., Kuwabara N., Tokuda M., Development of Optical Isotropic E-Field Sensor Operating More than 10 GHz Using Mach-Zehnder Interferometers, IEICE Transactions on Electronics, 2002, vol. E85C, no. 4, pp. 961–968.

13. Chen L., Reano R. M., Optics Express, 2012, vol. 20, no. 4, pp. 4032–4038. https://doi.org/10.1364/OE.20.004032

14. Goncharenko I. A., Ryabtsev V. N., Measurement Techniques, 2018, vol. 61, pp. 55–61. https://doi.org/10.1007/s11018-018-1387-4

15. Goncharenko I. A., Reabtsev V. N., Il’yushonok A. V., Navrotskiy O. D., Journal of Civil Protection, 2020, vol. 4, no. 4, pp. 378–388. (In Russ.) https://doi.org/10.33408/2519-237X.2020.4-4.378

16. Seng F., Yang Z., King R., Shumway L., Stan N., Hammond A., Warnick K. F., Schultz S., Applied Optics, 2017, vol. 56, no. 17, pp. 4911–4916. https://doi.org/10.1364/AO.56.004911

17. Goncharenko I. A. Esman A. K., Kuleshov V. K., Pilipovich V. A., Optics Communications, 2006, vol. 257, no. 1, pp. 54– 61. https://doi.org/10.1016/j.optcom.2005.07.024

18. Lin C.-Y., Wang A. X., Lee B. S., Zhang X., Chen R. T., Optics Express, 2011, vol. 19, no. 18, pp. 17372–17377. https://doi.org/10.1364/OE.19.017372

19. Pregla R., Journal of Lightwave Technology, 1996, vol. 14, no. 4, pp. 634–639. https://doi.org/10.1109/50.491403

20. Goncharenko I. A., Helfert S. F., Pregla R., International Journal of Electronics and Communications (AEÜ), 2005, vol. 59, no. 3, pp. 185–191. https://doi.org/10.1016/j.aeue.2004.11.012

21. Goncharenko I. A., Il’yushonok A. V., Ryabtsev V. N., Sensor of the Intensity of High-Frequency Electric Fields on the Base of Multi-Slot Optical Waveguides, Proceedings of 13 International Scientifi c and Technical Conference “Instrumentation-2020”, Minsk, Republic of Belarus, November, 18–20, 2020, Minsk, BNTU, 2020, pp. 28–30. (In Russ.)


Review

For citations:


Goncharenko I.A., Reabtsev V.N. Measurement of the intensity of high frequency electric field: application of ring waveguide with two slots filled with electro-optic polymer. Izmeritel`naya Tekhnika. 2021;(12):56-61. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-12-56-61

Views: 212


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)