

Measurement of the intensity of high frequency electric field: application of ring waveguide with two slots filled with electro-optic polymer
https://doi.org/10.32446/0368-1025it.2021-12-56-61
Abstract
The possibility of increasing the sensitivity of measurement transducer of the high frequency external electric field is analyzed. The increasing is possible by using the ring waveguides with two vertical and horizontal slots filled with electro-optic polymer. The structure of the measurement transducer is considered. In waveguides with two slots the intensity of propagating optical radiation in the slot region is higher than in single slot waveguides. The values of optimal slot width and separation are determined, which make it possible to achieve the maximal transducer sensitivity. The measurement transducer allows measuring the alternating electric fields with the frequency from 0 to 10 GHz in the range from 150 to 16·106 V/m with the resolution up to 150 V/m due to using the active organic polymer SEO125 and double slot waveguide. The measurement transducer can be applied for detecting the high-frequency waves electromagnetic pulses, analyses of external electromagnetic interference and diagnosis of high-frequency electronic circuits.
About the Authors
I. A. GoncharenkoBelarus
Igor A. Goncharenko
Minsk
V. N. Reabtsev
Belarus
Vitaly N. Reabtsev
Minsk
References
1. Bieler M., Hein G., Pierz K., Siegner U., Koch M., Applied Physics Letters, 2005, vol. 87, no. 4, pp. 042102–042104. https://doi.org/10.1063/1.2000333
2. Chunyang Han, Fangxing Lv, Chen Sun, and Hui Ding, Optics Letters, 2015, vol. 40, no. 16, pp. 3683–3686. https://doi.org/10.1364/OL.40.003683
3. Pfeifer T., Heiliger H.-M., Loffl er T., Ohlhoff C., Meyer C., Lupke G., Roskos H. G., Kurz H., IEEE Journal of Selected Topics in Quantum Electronics, 1996, vol. 2, no. 3, pp. 586–604. https://doi.org/10.1109/2944.571758
4. Bottauscio O., Chiampi M., Crotti G., Giordano D., Wang W., Zilberti L., IEEE Transactions on Instrumentation and Measurement, 2013, vol. 62, no. 1, pp. 1436–1442. https://doi.org/10.1109/TIM.2012.2230812
5. Passaro V. M. N., Dell’Olio F., De Leonardis F., Progress in Quantum Electronics, 2006, vol. 30, no. 2–3, pp. 45–73. https://doi.org/10.1016/j.pquantelec.2006.08.001
6. Ilchenko V. S., Savchenkov A. A., Matsko A. B., Maleki L., IEEE Photonics Technology Letters, 2002, vol. 14, no. 11, pp. 1602– 1604. https://doi.org/10.1109/LPT.2002.803916
7. Yong Zhao, Ya-nan Zhang, Ri-qing Lv, Jin Li, Journal of Lightwave Technology, 2017, vol. 35, no. 16, pp. 3440–3446. https://doi.org/10.1109/JLT.2016.2576500
8. Musab A. M. Al-Tarawni, A. Ashrif A. Bakar, Ahmad Rifqi Md Zain, Mou’ad A. Tarawneh, Sahrim Hj. Ahmad, Optical Engineering, 2017, vol. 56, no. 10, 107105. https://doi.org/10.1117/1.OE.56.10.107105
9. Zhang X., Hosseini A., Subbaraman H., Wang S., Zhan Q., Luo J., Jen A. K.-Y., Chen R. T., Journal of Lightwave Technology, 2014, vol. 32, no. 20, pp. 3774–3784. https://doi.org/10.1109/JLT.2014.2319152
10. Zhang J., Chen F., Sun B., IEEE Photonics Technology Letters, 2014, vol. 26, no. 3, pp. 275–277. https://doi.org/10.1109/LPT.2013.2292567
11. Park D. H., Pagan V. R., Murphy T. E., Luo J., Jen A. K.-Y., Herman W. N., Optics Express, 2015, vol. 23, no. 7, pp. 9464– 9476. https://doi.org/10.1364/OE.23.009464
12. Tajima K., Kobayashi R., Kuwabara N., Tokuda M., Development of Optical Isotropic E-Field Sensor Operating More than 10 GHz Using Mach-Zehnder Interferometers, IEICE Transactions on Electronics, 2002, vol. E85C, no. 4, pp. 961–968.
13. Chen L., Reano R. M., Optics Express, 2012, vol. 20, no. 4, pp. 4032–4038. https://doi.org/10.1364/OE.20.004032
14. Goncharenko I. A., Ryabtsev V. N., Measurement Techniques, 2018, vol. 61, pp. 55–61. https://doi.org/10.1007/s11018-018-1387-4
15. Goncharenko I. A., Reabtsev V. N., Il’yushonok A. V., Navrotskiy O. D., Journal of Civil Protection, 2020, vol. 4, no. 4, pp. 378–388. (In Russ.) https://doi.org/10.33408/2519-237X.2020.4-4.378
16. Seng F., Yang Z., King R., Shumway L., Stan N., Hammond A., Warnick K. F., Schultz S., Applied Optics, 2017, vol. 56, no. 17, pp. 4911–4916. https://doi.org/10.1364/AO.56.004911
17. Goncharenko I. A. Esman A. K., Kuleshov V. K., Pilipovich V. A., Optics Communications, 2006, vol. 257, no. 1, pp. 54– 61. https://doi.org/10.1016/j.optcom.2005.07.024
18. Lin C.-Y., Wang A. X., Lee B. S., Zhang X., Chen R. T., Optics Express, 2011, vol. 19, no. 18, pp. 17372–17377. https://doi.org/10.1364/OE.19.017372
19. Pregla R., Journal of Lightwave Technology, 1996, vol. 14, no. 4, pp. 634–639. https://doi.org/10.1109/50.491403
20. Goncharenko I. A., Helfert S. F., Pregla R., International Journal of Electronics and Communications (AEÜ), 2005, vol. 59, no. 3, pp. 185–191. https://doi.org/10.1016/j.aeue.2004.11.012
21. Goncharenko I. A., Il’yushonok A. V., Ryabtsev V. N., Sensor of the Intensity of High-Frequency Electric Fields on the Base of Multi-Slot Optical Waveguides, Proceedings of 13 International Scientifi c and Technical Conference “Instrumentation-2020”, Minsk, Republic of Belarus, November, 18–20, 2020, Minsk, BNTU, 2020, pp. 28–30. (In Russ.)
Review
For citations:
Goncharenko I.A., Reabtsev V.N. Measurement of the intensity of high frequency electric field: application of ring waveguide with two slots filled with electro-optic polymer. Izmeritel`naya Tekhnika. 2021;(12):56-61. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-12-56-61