

Transmission signals of perspective hydrogen standards of frequency and time via a fiber-optic channel with phase instability compensation
https://doi.org/10.32446/0368-1025it.2021-12-42-47
Abstract
Methods for improving the quality of transmission reference frequency and time signals for a new fiber-optic modem with phase instability compensation are presented. Algorithms for transmitting a pulse signal of time 1PPS with a synchronization error of no more than 200 ps are considered. The results of measurements of the Allan deviation during the transmission of a reference signal with a frequency of 100 MHz through a two-kilometer fiber-optic line with an additional external temperature effect are presented. In addition, with the help of the developed emulator of a fiber-optic line, the quality of transmission of reference signals for various lengths of optical fiber, up to 100 km, as well as for various external infl uences, was evaluated. The purpose of this work is to develop a fully functional device for transmitting and receiving reference frequency and time signals over a fiber-optic communication line up to 100 km long, which will have instability characteristics of the order of 1–3·10−17 in the daily measurement interval.
About the Authors
R. S. KobyakovRussian Federation
Roman S. Kobyakov
Nizhniy Novgorod
A. V. Zheglov
Russian Federation
Aleksandr V. Zheglov
Nizhniy Novgorod
S. Y. Medvedev
Russian Federation
Sergey YU. Medvedev
Nizhniy Novgorod
R. N. Novozhilov
Russian Federation
Roman N. Novozhilov
Nizhniy Novgorod
I. A. Pisarev
Russian Federation
Il'ya A. Pisarev
Nizhniy Novgorod
References
1. Fujieda M., Kumagai M., Nagano S., Gotoh T., UTC(NICT) signals transfer system using optical fi ber, IVS NICT-TDC News, 2010, no. 31, pp. 17–20, URL: https://www2.nict.go.jp/sts/stmg/ivs tdc/news_31/pdf/tdcnews_31.pdf (дата обращения: 01.12.2021).
2. Sliwczynski L., Krehlik P., Czubla A., Buczek L., Lipinski M., Metrologia, 2013, vol. 50(2), pp. 133–145. https://doi.org/10.1088/0026-1394/50/2/133
3. Huang S., Calhoun M., Tjoelker R., 2006 IEEE International Frequency Control Symposium and Exposition, pp. 637– 641. https://doi.org/10.1109/FREQ.2006.275462.
4. Kobyakov R. S., Medvedev S. Y., Mishagin K. G., Naumov A.V., Blinov I. Y., Development of DPN modem with selectable carrier frequencies, fi rst results of measurements, Al’manac of Modern Metrology, 2020, no. 2, pp. 73–82. (In Russ.)
5. Daussy C., Lopez O., Amy-Klein A., Goncharov A., Guinet M., Chardonnet C., Narbonneau F., Lours M., Chamon D., Bize S., Clairon A., Santarelli G., Tobar M., Luiten A. N., Phys. Rev. Lett., 2005, vol. 94 (20), 203904. https://doi.org/10.1103/PhysRevLett.94.203904
6. Kodet J., Pánek P., Procházkaet I., Metrologia, 2016, vol. 53, no. 1, pp. 18–26. https://doi.org/10.1088/0026-1394/53/1/18
7. Balaev R. I., Shibaeva D. M., Malimon A. N., Kurchanov A. F., The characteristics of phase stable coaxial and optical used for transmitting standard time and frequency information, Al’manac of Modern Metrology, 2015, no. 2, pp. 165–197. (In Russ.)
8. Fedorova D. M., Balaev R. I., Kurchanov A. F., Troyan V. I., Malimon A. N., Measurement Techniques, 2015, vol. 58, no. 9, pp. 994–999. https://doi.org/10.1007/s11018-015-0831-y
9. Zheglov A. V., Belyaev A. A., Medvedev S. Y., Pisarev I. A., Measurement Techniques, 2018, vol. 61, no. 8, pp. 774–778. https://doi.org/10.1007/s11018-018-1500-8
10. Foreman S. M., Holman K. W., Hudson D. D., Jones D. J., Ye J., Review of Scientifi c Instruments, 2007, vol. 78, pp. 1–25. https://doi.org/10.1063/1.2437069
Review
For citations:
Kobyakov R.S., Zheglov A.V., Medvedev S.Y., Novozhilov R.N., Pisarev I.A. Transmission signals of perspective hydrogen standards of frequency and time via a fiber-optic channel with phase instability compensation. Izmeritel`naya Tekhnika. 2021;(12):42-47. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-12-42-47