

Method of measuring the surface profile by a mechatronic profiler with parallel control of sensor drives
https://doi.org/10.32446/0368-1025it.2021-12-22-28
Abstract
The problems of increasing the maneuverability and speed of a mechatronic profiler, as well as expanding the range of measurement of profiles of various surfaces, are considered. To solve these problems, a method of measuring the surface profile by a mechatronic profiler with parallel control of sensor drives along a given trajectory is proposed. The control system of a mechatronic profiler with distributed control of actuators is described, which effectively implements the program movements of the executive body (laser sensor) of the profiler. The use of this control system makes it possible to increase the accuracy, sensitivity, speed and reliability of the mechatronic profiler during operation, as well as to reduce the measurement and calibration time while significantly improving the accuracy of measurement results. An information and measuring system of a mechatronic profiler has been developed. Software for controlling the electric drives of a mechatronic profiler is proposed. The metrological characteristics of the mechatronic profiler were established and confirmed during verification: the measuring range of the distance from the sensor to the surface is 100–500 mm; the limits of the permissible absolute measurement error ±0.05 % of the range; the measuring range along the circumference is 0–360°; the limits of the permissible error of the angular encoder ±30″. Graphically, the results of measuring the profile of the surface of a corrugated sheet with a deflection in the cross section downwards in polar coordinates are presented and a deflection (13.8 ± 0.05) mm is found. The results of the research will be useful for various sectors of the national economy – mechanical engineering, agriculture, construction, etc.
About the Authors
S. A. VasilievRussian Federation
Sergey A. Vasiliev
Cheboksary
A. A. Fedorova
Russian Federation
Alena A. Fedorova
Cheboksary
V. V. Alekseev
Russian Federation
Viktor V. Alekseev
Cheboksary
References
1. Lushnikov N., Lushnikov P., Transportation Research Procedia, 2017, vol. 20, рр. 425–429. https://doi.org/10.1016/j.trpro.2017.01.069
2. Alexander V. V., Deng H., Islam M. N., Terry F. L., Conference on Lasers and Electro-Optics, San Jose, 2010. https://doi.org/10.1364/CLEO_APPS.2010.AFA3
3. Abidin F. Z., Hung J., Zahid M. N., IOP Conference Series: Materials Science and Engineering, 2019, vol. 469, 012074. https://doi.org/10.1088/1757-899X/469/1/012074
4. Shih F. Y., Image processing and pattern recognition: fundamentals and techniques, Wiley-IEEE Press, 2010. https://doi.org/10.1002/9780470590416
5. Lee B. Y., Tarng Y. S., International Journal of Machine tools and Manufacture, 2001, vol. 41, pp. 1251–1263. https://doi.org/10.1016/S0890-6955(01)00023-2
6. Stoudt M., Hubbard J. B., Acta Materialia, 2005, vol. 53 (16), pp. 4293–4304. https://doi.org/10.1016/j.actamat.2005.05.038
7. Vasiliev S. A., Alekseev V. V., Rechnov A. V., Agrarnyi nauchnyi zhurnal, 2015, no. 9, рр. 11–13. (In Russ.)
8. Hockauf R., Grove T., Denkena B., Journal of Manufacturing and Materials Processing, 2019, vol. 3 (2), 40. https://doi.org/10.3390/jmmp3020040
9. Vasiliev S., Kirillov A., Afanasieva I., Proceedings of 17th International Scientifi c Conference “Engineering for Rural Development”, May 23–25, 2018, Jelgava, Latvia, vol. 17, pp. 537–542. https://doi.org/10.22616/ERDev2018.17.N126
10. Vasiliev S. A., Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional’noe obrazovanie, 2016, no. 3, pp. 220–226. (In Russ.)
11. Vasiliev S. A., Nauchnyi zhurnal Rossiiskogo NII problem melioratsii, 2016, no. 4, pp. 40–54. (In Russ.)
12. Polyakov V. M., Nearing A., Soil Science Society of America Journal, 2019, vol. 83, iss. 2, pp. 327–331. https://doi.org/10.2136/sssaj2018.10.0378
13. Vasilev S. A., Fedorova A. A., Aleksandrov R. I., RF Patent no. 2707907, Byull. Izobret., 2019 (34). (In Russ.)
14. Merlet J. P., Parallel robots, Kluwer Academic Publishers, 2000, 372 p.
15. Kheilo S. V., Glazunov B. A., Palochkin S. V., Manipulyatsionnye mekhanizmy parallel’noi struktury. Strukturnyi sintez. Kinematicheskii i silovoi analiz [Manipulation mechanisms of a parallel structure. Structural synthesis. Kinematic and force analysis], Moscow, MGTU im. A. N. Kosygina, 2011, 153 р. (In Russ.)
16. Kheilo S. V., Glazunov V. A., Shirinkin M. A., Kalendarev A. V., Problemy mashinostroeniya i nadezhnosti mashin, 2013, no. 5, рр. 19–24. (In Russ.)
17. Zhou B., Zhao J., Li L., Сomputer-Aided Design, 2015, vol. 67– 68, pp. 87–106. https://doi.org/10.1016/j.cad.2015.06.005
18. Huang N., Jin Y., Lu Y., Yi B., Li X., Wu S., Computers & Industrial Engineering, 2020, no. 139, 106142. https://doi.org/10.1016/j.cie.2019.106142
19. Wieczorowski M., International Journal of Machine Tools & Manufacture, 2001, no. 41, pp. 2017–2022. https://doi.org/10.1016/S0890-6955(01)00066-9
20. Zhuang J., Wang Z., Liao X., Gao B., Cheng L., Micron, 2019, no. 123, 102683. https://doi.org/10.1016/j.micron.2019.102683
21. Dresscher M., Jayawardhana B., Kooi B. J., Scherpen J. M. A., Mechatronics, 2020, no. 71, 102427. https://doi.org/10.1016/j.mechatronics.2020.102427
22. Vasilev S. A., Aleksandrov R. I., Fedorova A. A., RF Patent no. 2724386, Byull. Izobret., 2020 (18). (In Russ.)
Review
For citations:
Vasiliev S.A., Fedorova A.A., Alekseev V.V. Method of measuring the surface profile by a mechatronic profiler with parallel control of sensor drives. Izmeritel`naya Tekhnika. 2021;(12):22-28. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-12-22-28