

Evaluation of the metrological characteristics of Raman analyzer of natural gas
https://doi.org/10.32446/0368-1025it.2021-3-67-71
Abstract
The advantages of the Raman spectroscopy method in comparison with gas chromatography in the analysis of the composition of natural gas are described. The metrological characteristics of a Raman gas analyzer developed at the Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of the Russian Academy of Sciences have been studied. A series of measurements were carried out on three natural gas simulators with different concentrations of components. It is shown that Raman gas analyzers are capable of providing high measurement accuracy, close to that of gas chromatographs when analyzing components with a low molar fraction (0.001–0.010 %). It is noted that when analyzing components with a molar fraction in the range of 0.01–100.00 %, the accuracy of the proposed Raman gas analyzer surpassed the accuracy of gas chromatographs.
About the Authors
D. V. PetrovRussian Federation
Dmitry V. Petrov
Tomsk
I. I. Matrosov
Russian Federation
Ivan I. Matrosov
Tomsk
A. R. Zaripov
Russian Federation
Alexey R. Zaripov
Tomsk
A. S. Tanichev
Russian Federation
Aleksandr S. Tanichev
Tomsk
M. A. Kostenko
Russian Federation
Matvey A. Kostenko
Tomsk
A. O. Nekhoroshev
Russian Federation
Alexey O. Nekhoroshev
Tomsk
References
1. Hippler M., Anal. Chem., 2015, vol. 87, no. 15, pp. 7803– 7809. https://doi.org/10.1021/acs.analchem.5b01462
2. Sharma R., Poonacha S., Bekal A., Vartak S., Weling A., Tilak V., Mitra C., Opt. Eng., 2016, vol. 55, no. 10, 104103. https://doi.org/10.1117/1.OE.55.10.104103
3. Sieburg A., Knebl A., Jacob J. M., Frosch T., Anal. Bioanal. Chem., 2019, vol. 411, no. 29, pp. 7399–7408. https://doi.org/10.1007/s00216-019-02145-x
4. Zhu H., Zhou L., Chang H., Sun X., Spectrosc. Spectr. Anal., 2018, vol. 38, no. 10, pp. 3286–3294. https://doi.org/10.3964/J.ISSno.1000-0593(2018)10-3286-09
5. Gao Y., Dai L.-K., Zhu H.-D., Chen Y.-L., Zhou L., Chinese J. Anal. Chem., 2019, vol. 47, no. 1, pp. 67–76. https://doi.org/10.1016/S1872-2040(18)61135-1
6. Dabrowski K. M., Kuczynski S., Barbacki J., Wlodek T., Smulski R., Nagy S., J. Nat. Gas Sci. Eng., 2019, vol. 65, pp. 25–31. https://doi.org/10.1016/j.jngse.2019.02.003
7. Kiefer J., Seeger T., Steuer S., Schorsch S., Weikl M. C., Leipertz A., Meas. Sci. Technol., 2008, vol. 19, no. 8, 085408. https://doi.org/10.1088/0957-0233/19/8/085408
8. Petrov D. V., Matrosov I. I., Appl. Spectrosc., 2016, vol. 70, no. 10, pp. 1770–1776. https://doi.org/10.1177/0003702816644611
9. Buldakov M. A., Korolkov V. A., Matrosov I. I., Petrov D. V., Tikhomirov A. A., Korolev B. V., J. Opt. Technol., 2013, vol. 80, no. 7, pp. 426–430. https://doi.org/10.1364/JOT.80.000426
10. Petrov D. V., Matrosov I. I., Proceedings of SPIE, 22nd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, 29 November 2016, Tomsk, Russian Federation, 2016, vol. 10035, 1003523. https://doi.org/10.1117/12.2249299
11. Petrov D. V., Matrosov I. I., Zaripov A. R., Maznoy A. S., Spectrochim. Acta – Part A Mol. Biomol. Spectrosc., 2019, vol. 215, pp. 363–370. https://doi.org/10.1016/J.SAA.2019.03.006
12. Petrov D. V., Matrosov I. I., Zaripov A. R., Maznoy A. S., Appl. Spectrosc., 2020, vol. 74, no. 8, pp. 948–953. https://doi.org/10.1177/0003702820917222
13. Petrov D. V., Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc., 2018, vol. 191, pp. 573–578. https://doi.org/10.1016/j.saa.2017.10.058
14. Petrov D. V., Matrosov I. I., Zaripov A. R., Opt. Spectrosc., 2018, vol. 125, no. 1, pp. 5–9. https://doi.org/10.1134/S0030400X18070226
Review
For citations:
Petrov D.V., Matrosov I.I., Zaripov A.R., Tanichev A.S., Kostenko M.A., Nekhoroshev A.O. Evaluation of the metrological characteristics of Raman analyzer of natural gas. Izmeritel`naya Tekhnika. 2021;(3):67-71. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-3-67-71