

Determination of particle size distribution and electrokinetic potential of phyllosilicate powders by photon correlation spectroscopy
https://doi.org/10.32446/0368-1025it.2020-11-67-72
Abstract
The creation of adsorbents based on natural phylosilicates is one of the primary tasks of modern materials science. In its solution, the control of the granulometric composition of the powders is a prerequisite. The issues of controlling the particle size distribution and electrokinetic potential of phyllosilicates by the method of photon correlation spectroscopy are considered. Stable standardly prepared colloidal solutions of powders of kaolinite and montmorillonite clays from deposits of the Orenburg region are analyzed. The highest quality solution with objects accessible for observation was obtained near the isoelectric cleavage point of minerals (potential of hydrogen pH=6,5). The modal effective diameters of non-agglomerated particles of kaolinite and montmorillonite have been determined. The formation of ultra- and microaggregates of micron-sized particles was established, interacting both along the basal planes and by the type of basal-lateral cleavage. The dependence of the electrokinetic potential of a suspension of kaolinite and montmorillonite particles on the pH of the medium has been measured. It is shown that the behavior of particles of both types in an electric field in a suspension with pH>5 is practically the same, and the main differences are manifested in an acidic medium: the isoelectric point for kaolinite is close to and for montmorillonite pH=3,5.
Keywords
About the Author
A. G. ChetverikovaRussian Federation
Anna G. Chetverikova
Orenburg
References
1. Kotov Y. A., Ivanov V. V., Poroshkovye nanotekhnologii dlya sozdaniya funktsional’nykh materialov i ustroistv elektrokhimicheskoi energetiki [Powder nanotechnology for creating functional materials and devices for electrochemical energy], Bulletin of the Russian Academy of Sciences, 2008, vol. 78, no. 9, pp. 777–791. (In Russ.)
2. Bensebaa F., Nanoparticle Technologies: From Lab to Market, Oxford, Academic Press, 2013, 560 p.
3. Lange F. F., Journal of the American Ceramic Society, 1989, vol. 72, iss. 1, pp. 3–15. https://doi.org/10.1111/j.1151-2916.1989.tb05945.x
4. Mironov R. A., Zabezhaylov M. O., Yakushkina V. S., Rusin M. Y., Determination of the Grain-Size Distribution of Zirconia Based Powders by the Methods of Static Laser Scattering and Optical Microscopy, Industrial laboratory. Diagnostics of materials, 2016, vol. 82, no. 11, pp. 32–36. (In Russ.)
5. Wu T. Y., Guo N., Teh Ch. Y., Hay J. X. W., Advances in ultrasound technology for environmental remediation, Springer, 2013, pp. 5–12. ttps://doi.org/10.1007/978-94-007-5533-8
6. Novik A. V., Extented abstract of candidate’s dissertation in tech. sciences (LETI, St. Petersburg, 2013).
7. Buckley J. S., Takamura K., Morrow N. R., SPE Reservoir Engineering, 1989, vol. 4, iss. 03, pp. 332–340. https://doi.org/10.2118/16964-PA
8. Navee n Kumar, Cunlu Zhao, Aram Klaassen, Dirk van den Ende, Frieder Mugele, Igor Siretanu, Geochimica et Cosmochimica Acta, 2016, vol. 175, pp. 100–112. https://doi.org/10.1016/j.gca.2015.12.003
9. Gupta V., Miller J. D., Journal of the Colloid Interface Science, 2010, vol. 344, iss. 2, pp. 362–371. https://doi.org/10.1016/j.jcis.2010.01.012
10. Nikhil John Kollannur, Dali Naidu Arnepalli, Factors Infl uencing Zeta Potential of Clayey Soils, in book: Stalin V., Muttharam M. (eds) Geotechnical Characterisation and Geoenvironmental Engineering. Lecture Notes in Civil Engineering, Springer, Singapore, 2019, vol. 16, pp. 171–178. https://doi.org/10.1007/978-981-13-0899-4_21
11. Chen J., Min F., Liu L., Jia F., Physicochemical Problems of Mineral Processing, 2020, vol. 56, no. 2, pp. 338–349. https://doi.org/10.37190/ppmp/117769
12. Seredin V. V., Krasil’nikov P. A., Medvedeva N. A., Variation of electrokinetic potential of clayey colloids in aquatic and hydrocarbon media, Geoekologiya. Inzhenernaya Geologiya. Gidrogeologiya. Geokriologiya, 2017, no. 1, pp. 66–74. (In Russ.)
13. Osipov V. I., Sokolov V. N., Gliny i ikh svoistva: Monografi ya [Clays and their properties: Monograph], Moscow, Geos Publ., 2013, 578 p. (In Russ.)
14. Vesentsev A. I., Dang Minh Thuy, Peristaya L. F., Mihaylyukova M. O., Sorption and chromatographic processes, 2018, vol. 18, no. 3, pp. 297–308. (In Russ.) https://doi.org/10.17308/sorpchrom.2018.18/532
15. Yanin E. N., Osobennosti raspredeleniya tyazhelykh metallov v granulometricheskom spektre tekhnogennykh rechnykh ilov [Features of the distribution of heavy metals in the granulometric spectrum of technogenic river silts], Problemy okruzhayushchei sredy i prirodnykh resursov, 2018, no. 7, pp. 58–65. (In Russ.)
16. Hammas A., Lecomte-Nana G., Azril N., Daou I., Peyratout C., Zibouche F., Minerals, 2019, vol. 9, no 12, 757. https://doi.org/10.3390/min9120757
17. Cui J., Zhang Z., Han F., Applied Clay Science, 2020, vol. 190, no. 1, 105543. https://doi.org/10.1016/j.clay.2020.105543
18. Chetverikova A. G., Kanygina O. N., Alpysbaeva G. Z., Yudin A. A., Sokabayeva S. S., Kondensirovannye Sredy I Mezhfaznye Granitsy, 2019, vol. 21, iss. 3, pp. 446–454. (In Russ.) https://doi.org/10.17308/kcmf.2019.21/1155
19. Merkus H., Particle size measurements. Springer, 2008, 534 p. https://doi.org/10.1007/978-1-4020-9016-5
20. Lizunova A. A., Efi mov A. A., Urazov M. N., Sivodedov D. A., Lisovskiy S. V., Skidin D. O., Loshkarev A. A., Volkov I. A., Ivanov V. V., Development and application of standard samples of the diameter of nanoparticles of colloidal solutions of aluminum, titanium, silicon and zinc oxides, Standard samples, 2013, no. 3, pp. 16–20. (In Russ.)
21. Danilov V. E., Ayzenstadt A. M., Nanotechnologies in Construction: A Scientifi c Internet-Journal, 2016, vol. 8, no. 3, pp. 97–110. (In Russ.) https://doi.org/10.15828/2075-8545-2016-8-3-97-110
22. Yukselen Y., Kaya A., Water, Air, and Soil Pollution, 2003, vol. 145, no 1–4, pp. 155–168. https://doi.org/10.1023/A:1023684213383
23. Hojiyev R., Ersever G., Karaağaçlıoğlu İ. E., Karakaş F., Boylu F., Applied Clay Science, 2016, vol. 127–128, pp. 105–110. https://doi.org/10.1016/j.clay.2016.03.042
Review
For citations:
Chetverikova A.G. Determination of particle size distribution and electrokinetic potential of phyllosilicate powders by photon correlation spectroscopy. Izmeritel`naya Tekhnika. 2021;(11):67-72. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-11-67-72