

Method of coolant expenditure measuring in work control system of nuclear reactor
https://doi.org/10.32446/0368-1025it.2021-11-30-37
Abstract
The article discusses a design of an optical flow meter for monitoring the flow rate of a coolant in a pipeline, both in laminar and turbulent flow regimes at different temperatures. A method for measuring the flow rate of the coolant based on the registration of γ-radiation from changes in its oxygen activity has been developed. The design of sensors for recording oxygen activity based on optical fiber and a method for their placement on the pipeline are proposed. The optimal value of doping the core of an optical fiber with germanium oxide for measuring the flow rate of the coolant q at various intensities of oxygen activity in it has been established. A method is proposed for restoring the transparency of an optical fiber when measuring q in the presence of γ-radiation. The technique for measuring q is considered in detail and the features of its implementation are noted. The results of investigating the operation of an optical flow meter on an experimental stand are presented
About the Authors
R. V. DavydovRussian Federation
Roman V. Davydov
Saint Petersburg
I. M. Gureeva
Russian Federation
Irena M. Gureeva
Saint Petersburg
V. V. Davydov
Russian Federation
Vadim V. Davydov
Saint Petersburg
B. Vyazemy, Moscow Region
References
1. Alekseev P. N., Gagarinskii A. Y., Kalugin M. A., Fomichenko P. A., Asmolov V. G., Atomic Energy, 2019, vol. 126, no. 4, pp. 207–212. https://doi.org/10.1007/s10512-019-00538-w
2. Klinov D. A., Gulevich A. V., Kagramanyan V. S., Dekusar V. M., Usanov V. I., Atomic Energy, 2019, vol.125, no. 3, pp. 143–148. https://doi.org/10.1007/s10512-018-00457-2
3. Davydov V. V., Myazin N. S., Kiryukhin A. V., Atomic Energy, 2020, vol. 127, no. 5, pp. 274–279. https://doi.org/10.1007/s10512-020-00623-5
4. Shpeizman V. V., Nikolaev V. I., Pozdnyakov A. O., Timashov R. B., Averkin A. I., Technical Physics, 2020, vol. 65, no. 1, pp. 73–77. https://doi.org/10.1134/S1063784220070191
5. Bobyl A., Malyshkin V., Dolzhenko V., Grabovets A., Chernoivanov V., IOP Conference Series: Earth and Environmental Science, 2019, vol. 390, no. 1, 012047. https://doi.org/10.1088/1755-1315/390/1/012047
6. Velt I. D., Mikhailova Yu. V., Measurement Techniques, 2013, vol. 56, no. 3, pp. 283–288. https://doi.org/10.1007/s11018-013-0196-z
7. Looney R., Priede J., Flow Measurement and Instrumentation, 2019, vol. 65, pp. 128–135. https://doi.org/10.1016/j.flowmeasinst.2018.11.019
8. Vel’t I. D., D’yakonova E. A., Mikhailova Y. V., Terekhina N. V., Atomic Energy, 2017, vol. 122, no. 4, pp. 243–251. https://doi.org/10.1007/s10512-017-0262-8
9. Semenikhin A. V., Saunin Y. V., Ryasnyi S. I., Atomic Energy, 2018, vol. 124, no. 1, pp. 8–13. https://doi.org/10.1007/s10512-018-0367-8
10. Sorokin A. P., Kuzina Y. A., Atomic Energy, 2020, vol. 128, no. 5, pp. 277–286. https://doi.org/10.1007/s10512-020-00688-2
11. Davydov V. V., Dudkin V. I. and Karseev A. Yu., Measurement Techniques, 2014, vol. 57, no. 8, pp. 912–918. https://doi.org/10.1007/s11018-014-0559-0
12. Firth J., Ladouceur F., Brodzeli Z., Wyres M., Silvestri L., Flow Measurement and Instrumentation, 2016, vol. 48, pp. 15– 19. https://doi.org/10.1016/j.flowmeasinst.2016.01.006
13. Abramov L. V., Baklanov A. V., Bakmetiev A. M., Kiselev V. V., Atomic Energy, 2020, vol. 129, no. 2, pp. 103–108. https://doi.org/10.1007/s10512-020-00611-2
14. Marusina M. Ya., Bazarov B. A., Galaidin P. A., Silaev A. A., Marusin M. P., Zakemoskya E. Yu., Gilev A. G., Alekseev A. V., Measurement Techniques, 2014, vol. 57, no. 4, pp. 461–465. https://doi.org/10.1007/s11018-014-0478-0
15. Kashay kin P. F., Tomashuk A. L., Salgansky M. Y., Guryanov A. N., Dianov E. M., Journal of Applied Physics, 2017, vol. 121, no. 21, 213104. https://doi.org/10.1063/1.4984601
16. Kashaykin P. F., Tomashuk A. L., Vasiliev S. A., Zarenbin A. V., Semjonov S. L., IEEE Transactions on Nuclear Science, 2020, vol. 67, no. 10, pp. 2162–2171. https://doi.org/10.1109/TNS.2020.3019404
17. Dmitri eva D. S., Pilipova V. M., Dudkin V. I., Davydov V. V., Rud V. Yu., Journal of Physics: Conference Series, 2020, vol. 1697, no. 1, 012145. https://doi.org/10.1088/1742-6596/1697/1/012145
18. Dmitrieva D. S., Pilipova V. M., Davydov V. V., Valiullin L. R., Journal of Physics: Conference Series, 2020, vol. 1695, no. 1, 012130. https://doi.org/10.1088/1742-6596/1695/1/012130
19. Filimonov P. E., Semchenkov Yu. M., Malyshev V. V., Gusev I. N., Atomic Energy, 2020, vol. 129, no. 3, pp. 143–148. https://doi.org/10.1007/s10512-020-00672-2
20. Arkharov I. A., Kakorin I. D., Measurement Techniques, 2020, vol. 63, no. 7, pp. 549–558. https://doi.org/10.1007/s11018-020-01822-z
21. Davydov V. V., Measurement Techniques, 2016, vol. 59, no. 11, pp. 1202–1209. https://doi.org/10.1007/s11018-017-1116-4
22. Akhobadze G. N., Measurement Techniques, 2020, vol. 63, no. 5, pp. 361–367. https://doi.org/10.1007/s11018-020-01796-y
Review
For citations:
Davydov R.V., Gureeva I.M., Davydov V.V. Method of coolant expenditure measuring in work control system of nuclear reactor. Izmeritel`naya Tekhnika. 2021;(11):30-37. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-11-30-37