

The measuring system for monitoring the microarc heating process during surface hardening of steel products
https://doi.org/10.32446/0368-1025it.2021-3-33-39
Abstract
The accelerated heat treatment during steel products hardening technology has been investigated. The possibility of measuring the temperature of steel products by thermoelectric platinum-platinum-rhodium thermocouple under microarc heating conditions is analyzed. During the experiments, working junctions of two S-type thermocouples: working and standard, were coined into the sample surface at the same level. The free thermocouples ends were connected to a digital multimeter and a personal computer. It was determined that 5 factors affect the measurement results: the electric current strength in the circuit, carbon powder, calibration, number of repeated measurement cycles, and a thermocouple copy. When planning the experiment, the concept of conducting a step-by-step nested experiment was used. Variance analysis method was used to process the experimental results. The measurement method precision parameters were calculated: repeatability and reproducibility. A linear mathematical model linking the measurement method reproducibility index with the measured temperature value has been obtained. A linear mathematical model is obtained that relates the reproducibility index of the measurement method to the measured temperature value. A measuring system for the experimental determination of the temperature of a steel sample is proposed and its application is justified for different electric current densities on the sample surface and varying duration of microarc heating. The possibilities of selecting and controlling the microarc heating modes depending on the required temperature of the heat treatment of the steel product are determined.
About the Authors
M. S. StepanovMakar S. Stepanov
Rostov-on-Don
I. G. Koshlyakova
Russian Federation
Irina G. Koshlyakova
Rostov-on-Don
References
1. Arsent’ev P. P., Yakovlev V. V., Krasheninnikov M. G., Pronin L. A., Filippov E. S., Fiziko-khimicheskie metody issledovaniya metallurgicheskikh protsessov, Moscow, Metallurgiya Publ., 1988, 509 p. (in Russ.).
2. Blinov O. M., Belen’kii A. M., Berdyshev V. F., Teplotekhnicheskie izmereniya i pribory, Moscow, Metallurgiya Publ., 1993, 287 p. (in Russ.).
3. Jun S., Kochan O. V., Jotsov V. S., Measurement Techniques, 2015, vol. 58, no. 3, pp. 327–331. https://doi.org/10.1007/s11018-015-0709-z
4. Jun S., Kochan O. V., Measurement Techniques, 2015, vol. 57, no. 10, pp. 1160–1166. https://doi.org/10.1007/s11018-015-0596-3
5. Voroshnin L. G., Mendeleeva O. L., Smetkin V. A., Teoriya i tekhnologiya khimiko-termicheskoi obrabotki, Moscow, Novoe znanie Publ., 2010, 304 p. (in Russ.).
6. Thermochemical Surface Engineering of Steels, ed. Eric J. Mittemeijer, Marcel A. J. Somers, Woodhead Publishing, 2015, 816 р.
7. Berlin E. V., Koval’ N. N., Seidman L. A., Plazmennaya khimiko-termicheskaya obrabotka stal’nykh detalei, Moscow, Tekhnosfera Publ., 2012, 464 p. (in Russ.).
8. Suminov I. V., Belkin P. N., Ehpel’fel’d A. V., Plazmennoehlektroliticheskoe modifi tsirovanie poverkhnosti metallov i splavov, in 2 vol., vol. 2, Moscow, Tekhnosfera Publ., 2011, 512 p. (in Russ.).
9. Johansson K., Riekehr L., Fritze S., Lewin E., Surface and coatings technology, 2018, vol. 349, pp. 529–539. https://doi.org/10.1016/j.surfcoat.2018.06.030
10. Ren K., Yue W., Zhang H., Surface and coatings technology, 2018, vol. 349, pp. 602–610. https://doi.org/10.1016/j.surfcoat.2018.06.039
11. Qu C. C., Li J., Juan Y. F., Shao J. Z., Song R., BaI L. L., Chen J. L., Surface and coatings technology, 2019, vol. 357, pp. 811–821. https://doi.org/10.1016/j.surfcoat.2018.10.100
12. Krinitcyn M., Pribytkov G., Korzhova V., Firsina I. Surface and coatings technology, 2019, vol. 358, pp. 706–714. https://doi.org/10.1016/j.surfcoat.2018.12.001
13. Kirnbauer A., Kretschmer A., Koller C. M., Wojcik T., Mayrhofer P. H., Paneta V., Hans M., Schneider J. M., Polcik P., Surface and coatings technology, 2020, vol. 389, 125674. https://doi.org/10.1016/j.surfcoat.2020.125674
14. Aleksandrov V. A., Petrova L. G., Sergeeva A. S., Aleksandrov V. D., Akhmetzhanova E. U., Russian Engineering Research, 2019, vol. 39, no. 8, pp. 693–695. https://doi.org/10.3103/S1068798X19080033
15. Aleksandrov V. D., Petrova L. G., Sergeeva A. S., Russian Engineering Research, 2018, vol. 38, no. 1, pp. 49–52. https://doi.org/10.3103/S1068798X18010033
16. Stepanov M. S., Dombrovskii Yu. M., Pustovoit V. N., Metal Science and Heat Treatment, 2017, vol. 59, no. 1-2, pp. 55–59. https://doi.org/10.1007/s11041-017-0102-4
17. Stepanov M. S., Dombrovskii Yu. M., Pustovoit V. N., Metal Science and Heat Treatment, 2017, vol. 59, no. 5-6, pp. 308–312. https://doi.org/10.1007/s11041-017-0148-3
18. Stepanov M. S., Dombrovskii Yu. M., Steel in Translation, 2016, vol. 46, no. 2, pp. 79–82. https://doi.org/10.3103/S0967091216020169
19. Stepanov M. S., Dombrovskii Yu. M., Inorganic Materials: Applied Researche, 2018, vol. 9, no. 4, pp. 703–708. https://doi.org/10.1134/S2075113318040391
20. Stepanov M. S., Dombrovskii Yu. M., Davidyan L. V., Izvestiya. Ferrous Metallurgy, 2018, vol. 61, no. 8, pp. 625–630 (in Russ.). https://doi.org/10.17073/0368-0797-2018-8-625-630
21. Stepanov M. S., Dombrovskii Yu. M., Davidyan L. V., Izvestiya. Ferrous Metallurgy, 2019, vol. 62, no. 6, pp. 446–451 (in Russ.). https://doi.org/10.17073/0368-0797-2019-6-446-451
22. Stepanov M. S., Dombrovskii Yu. M., XIII mezhdunarodnaya nauchno-prakticheskaya konferentsiya “Sostoyanie i perspektivy razvitiya agropromyshlennogo kompleksa” v ramkakh XXIII agropromyshlennogo foruma yuga Rossii i vystavki “INTERAGROMASh”, Rostov-na-Donu, 2020, pp. 272–274 (in Russ.).
23. Cherepin V. T., Eksperimental’naya tekhnika v fi zicheskom metallovedenii, Kiev, Tekhnika Publ., 1968, 280 p. (in Russ.).
Review
For citations:
Stepanov M.S., Koshlyakova I.G. The measuring system for monitoring the microarc heating process during surface hardening of steel products. Izmeritel`naya Tekhnika. 2021;(3):33-39. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-3-33-39