

Precise measurements of specific heat capacity of beryllium in temperature range 260–870 K
https://doi.org/10.32446/0368-1025it.2021-3-29-32
Abstract
The possibility of using beryllium as a means of storing and transferring a unit of specific heat capacity and extending the range of values of heat capacity measures from 1654 to 2900 J/(kg·K) towards the upper limit is estimated. The temperature dependence of the specific heat capacity of beryllium samples of known composition in the temperature range of 260–870 K has been determined. The reproducibility of the thermophysical properties of beryllium over time and under repeated heating in the specified temperature range is analyzed. The results obtained are relevant for the field of metrological support in the field of measurements of thermophysical quantities.
About the Authors
T. A. KompanRussian Federation
Tatiana A. Kompan
St. Petersburg
V. I. Kulagin
Russian Federation
Valentin I. Kulagin
St. Petersburg
V. V. Vlasova
Russian Federation
Viktoriya V. Vlasova
St. Petersburg
S. V. Kondratiev
Russian Federation
Sergey V. Kondratiev
St. Petersburg
N. F. Pukhov
Russian Federation
Nikolay F. Pukhov
St. Petersburg
References
1. Ginnings D. C., Douglas T. B., Ball A. F., Journal of the American Chemical Society, 1951, vol. 73, no. 3, pp. 1236–1240. https://doi.org/10.1021/ja01147a107
2. Kantor P. B., Krasovitskaya R. M., Kisel A. N., Physics of Metals and Metallography, 1960, vol. 10, pp. 42–44. (In. Russ.)
3. Mit’kina E. A., The Soviet Journal of Atomic Energy, 1961, vol. 7, pp. 669–670. https://doi.org/10.1007/BF01480348
4. Arblaster J. W., Journal of Phase Equilibria and Diff usion, 2016, vol. 37, no. 5, pp. 581–591. https://doi.org/10.1007/s11669-016-0488-5
5. Bodryakov V. Yu., High Temperature, 2018, vol. 56 (2), pp. 177–183. https://doi.org/10.1134/S0018151X18020049
6. Chase Jr., M.W. (1998) NIST-JANAF Themochemical Tables, 4th Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1-1951.
7. Kompan T. A., Kulagin V. I., Vlasova V. V., Kondratiev S. V., Lukin A. Ya., Pukhov N. F., Measurement Techniques, 2020, vol. 63, no. 6, рр. 407–413. https://doi.org/10.1007/s11018/020-01802-3
8. Archer D. G., Journal of Physical and Chemical Reference Data, 1993, vol. 22, no.6, рр.1441–1453. https://doi.org/10.1063/1.555931
9. O’Neil M. J., Anal. Chem., 1966, vol. 38 (10), pp. 1331–1336. https://doi.org/10.1021/ac60242a011
10. Kompan T. A., Kulagin V. I., Vlasova V. V., Metodicheskie aspekty povysheniya tochnosti izmereniya udel’noj teployomkosti diff erencial’nymi skaniruyushchimi kalorimetrami [Methodological aspects of improving the accuracy of specifi c heat capacity measurement by diff erential scanning calorimeters], Zakonodatel’- naya i prikladnaya metrologiya, 2020, no. 2 (164), pp. 24–29. (In. Russ.)
11. Tipton C. R., Reactor Handbook. V.1 Materials. Reactor, U.S. Atomic Energy Commission, Interscience Publishers, 1960, 1207 р.
Review
For citations:
Kompan T.A., Kulagin V.I., Vlasova V.V., Kondratiev S.V., Pukhov N.F. Precise measurements of specific heat capacity of beryllium in temperature range 260–870 K. Izmeritel`naya Tekhnika. 2021;(3):29-32. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-3-29-32