Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Precise measurements of specific heat capacity of beryllium in temperature range 260–870 K

https://doi.org/10.32446/0368-1025it.2021-3-29-32

Abstract

The possibility of using beryllium as a means of storing and transferring a unit of specific heat capacity and extending the range of values of heat capacity measures from 1654 to 2900 J/(kg·K) towards the upper limit is estimated. The temperature dependence of the specific heat capacity of beryllium samples of known composition in the temperature range of 260–870 K has been determined. The reproducibility of the thermophysical properties of beryllium over time and under repeated heating in the specified temperature range is analyzed. The results obtained are relevant for the field of metrological support in the field of measurements of thermophysical quantities.

About the Authors

T. A. Kompan
D. I. Mendeleyev Institute for Metrology (VNIIM)
Russian Federation

Tatiana A. Kompan

St. Petersburg



V. I. Kulagin
D. I. Mendeleyev Institute for Metrology (VNIIM)
Russian Federation

Valentin I. Kulagin

St. Petersburg



V. V. Vlasova
D. I. Mendeleyev Institute for Metrology (VNIIM)
Russian Federation

Viktoriya V. Vlasova

St. Petersburg



S. V. Kondratiev
D. I. Mendeleyev Institute for Metrology (VNIIM)
Russian Federation

Sergey V. Kondratiev

St. Petersburg



N. F. Pukhov
D. I. Mendeleyev Institute for Metrology (VNIIM)
Russian Federation

Nikolay F. Pukhov

St. Petersburg



References

1. Ginnings D. C., Douglas T. B., Ball A. F., Journal of the American Chemical Society, 1951, vol. 73, no. 3, pp. 1236–1240. https://doi.org/10.1021/ja01147a107

2. Kantor P. B., Krasovitskaya R. M., Kisel A. N., Physics of Metals and Metallography, 1960, vol. 10, pp. 42–44. (In. Russ.)

3. Mit’kina E. A., The Soviet Journal of Atomic Energy, 1961, vol. 7, pp. 669–670. https://doi.org/10.1007/BF01480348

4. Arblaster J. W., Journal of Phase Equilibria and Diff usion, 2016, vol. 37, no. 5, pp. 581–591. https://doi.org/10.1007/s11669-016-0488-5

5. Bodryakov V. Yu., High Temperature, 2018, vol. 56 (2), pp. 177–183. https://doi.org/10.1134/S0018151X18020049

6. Chase Jr., M.W. (1998) NIST-JANAF Themochemical Tables, 4th Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1-1951.

7. Kompan T. A., Kulagin V. I., Vlasova V. V., Kondratiev S. V., Lukin A. Ya., Pukhov N. F., Measurement Techniques, 2020, vol. 63, no. 6, рр. 407–413. https://doi.org/10.1007/s11018/020-01802-3

8. Archer D. G., Journal of Physical and Chemical Reference Data, 1993, vol. 22, no.6, рр.1441–1453. https://doi.org/10.1063/1.555931

9. O’Neil M. J., Anal. Chem., 1966, vol. 38 (10), pp. 1331–1336. https://doi.org/10.1021/ac60242a011

10. Kompan T. A., Kulagin V. I., Vlasova V. V., Metodicheskie aspekty povysheniya tochnosti izmereniya udel’noj teployomkosti diff erencial’nymi skaniruyushchimi kalorimetrami [Methodological aspects of improving the accuracy of specifi c heat capacity measurement by diff erential scanning calorimeters], Zakonodatel’- naya i prikladnaya metrologiya, 2020, no. 2 (164), pp. 24–29. (In. Russ.)

11. Tipton C. R., Reactor Handbook. V.1 Materials. Reactor, U.S. Atomic Energy Commission, Interscience Publishers, 1960, 1207 р.


Review

For citations:


Kompan T.A., Kulagin V.I., Vlasova V.V., Kondratiev S.V., Pukhov N.F. Precise measurements of specific heat capacity of beryllium in temperature range 260–870 K. Izmeritel`naya Tekhnika. 2021;(3):29-32. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-3-29-32

Views: 80


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)