Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Device for measuring the Seebeck coeffi cient of thermoelectric materials in the temperature range 300–800 K

https://doi.org/10.32446/0368-1025it.2023-8-67-72

Abstract

The problem of identifying patterns that are associated with the features of the structure and phase composition of new thermoelectric materials obtained by self-propagating high-temperature synthesis is considered. A measuring device has been developed to determine the Seebeck coefficient (thermoelectric motive force) of thermoelectric materials in the temperature range of 300–800 K in argon, air or vacuum. The design of the measuring device is described in detail, the capabilities of the device and the measurement error (less than 5 %) are discussed. The thermoelectromotive force of reference nickel samples in the temperature range of 300–800 K in an argon medium was measured by a differential method. Negative values of the Seebeck coefficient of the nickel sample were obtained throughout the studied temperature range, which indicates the predominance of electrons as the main charge carriers in the sample material. At room temperature, the measured value of the Seebeck coefficient is –19.05 mkV/K and decreases to a value of –25.71 mkV/K with an increase in temperature to 515 K. With a further increase in temperature to 640 K, the Seebeck coefficient monotonically increases to a value of –19.60 mkV/K. At temperatures above 640 K, the Seebeck coefficient continuously decreases and at 824 K reaches a value of –24.12 mkV/K. The Curie point is 644 K. The obtained values of the Seebeck coefficient for nickel in the temperature range 300–800 K are comparable with the data given in the literature. When calculating the Seebeck coefficient of the material, equations are used using the Seebeck coefficient values for the positive and negative thermocouple paths, which eliminates the need for additional measuring probes and contacts to measure the thermoelectric voltage on the sample. The set-up can also be used to make electrical resistance measurements using the standard 4-point method.

About the Authors

A. V. Karpov
Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences
Russian Federation

Andrey V. Karpov

Chernogolovka, Moscow Region



A. E. Sytschev
Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences
Russian Federation

Alexander E. Sytschev

Chernogolovka, Moscow Region



A. O. Sivakova
Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences
Russian Federation

Alina O. Sivakova

Chernogolovka, Moscow Region



References

1. Goldsmid H. J. Introduction to Thermoelectricity. Springer Berlin, Heidelberg, 2016, 278 p. https://doi.org/10.1007/978-3-662-49256-7

2. Wood C. Rep. Prog. Phys., 1988, vol. 51, no. 4, 459. https://doi.org/10.1088/0034-4885/51/4/001

3. Nolas G. S., Sharp J., Goldsmid H. J. Thermoelectrics: Basic Principles New Materials Developments. Springer Berlin, Heidelberg, 2001, 293 p. https://doi.org/10.1007/978-3-662-04569-5

4. Бурков А. Т., Федотов А. И., Касьянов А. А., Пантелеев Р. И., Накама Т. Методы и устройства измерения термоЭДС и электропроводности термоэлектрических материалов при высоких температурах // Научно-технический вестник информационных технологий, механики и оптики. 2015. Т. 15. № 2. С. 173–195. [Burkov A. T., Fedotov A. I., Kasyanov A. A., Panteleev R. I., Nakama T. Sci. Tech. J. Inf. Technol. Mech. Opt. 2015, vol. 15, no. 2, pp. 173–195 (In Russ.)] https://doi.org/10.17586/2226-1494-2015-15-2-173-195

5. Martin J., Tritt T., Uher C. J. Appl. Phys., 2010, vol. 108, no. 12, 121101. https://doi.org/10.1063/1.3503505

6. Burkov A. T., Heinrich A., Konstantinov P. P., Nakama T., Yagasaki K. Meas. Sci. Technol., 2001, vol. 12, no. 3, pp. 264–272. https://doi.org/10.1088/0957-0233/12/3/304

7. Kumar A., Patel A., Singh S., Kandasami A., Kanjilal D. Rev. Sci. Instrum., 2019, vol. 90, no. 10, p. 104901. https://doi.org/10.1063/1.5116186

8. Paul B. Measurement, 2012, vol. 45, no. 1, pp. 133–139. https://doi.org/10.1016/j.measurement.2011.09.007

9. D’angelo J., Downey A., Hogan T. Rev. Sci. Instrum., 2010, vol. 81, 075107. https://doi.org/10.1063/1.3465326

10. Shamim Sk, Abhishek Pandey, Sudhir K. Pandey. Rev. Sci. Instrum., 2022, vol. 93, 043902. https://doi.org/10.1063/5.0061819

11. Iwanaga S., Toberer E. S., Lalonde A., Snyder G.J. Rev. Sci. Instrum., 2011, vol. 82, 063905. https://doi.org/10.1063/1.3601358

12. Gunes M., Parlak M., Ozenbas M. Meas. Sci. Technol., 2014, vol. 25, no. 5, 055901. https://doi.org/10.1088/0957-0233/25/5/055901

13. Fu Q., Xiong Y., Zhang W., Xu D., Fu Q., Xiong Y., Xu D. A. Rev. Sci. Instrum., 2017, vol. 88, 095111. https://doi.org/10.1063/1.4990634

14. Ponnambalam V., Lindsey S., Hickman N. S., Tritt Terry M. Rev. Sci. Instrum., 2006, vol. 77, p. 073904. https://doi.org/10.1063/1.2219734

15. Barnard R. D. Thermoelectricity in Metals and Alloys. Taylor & Francis, London, 1972, 259 p.

16. Мержанов А. Г., Боровинская И. П. Самораспространяющийся высокотемпературный синтез тугоплавких неорганических соединений // Доклады АН СССР. 1972. Т. 204. № 2. С. 366–369. [Merzhanov A. G., Borovinskaya I. P. Samorasprostranyayushchijsya vysokotemperaturnyj sintez tugoplavkih neorganicheskih soedinenij. Doklаdy AN SSSR, 1972, vol. 204, no. 2, pp. 366–369 (In Russ.)]

17. De Boor J., Mller E. Rev. Sci. Instrum., 2013, vol. 84, 065102. https://doi.org/10.1063/1.4807697

18. Burns G., Scroger M., Strouse G., Croarkin M., Guthrie W. Temperature-electromotive force reference functions and tables for the letter-designated thermocouple types based on the ITS-90, National Institute of Standards and Technology, Gaithersburg, MD, 1993, 630 p. https://doi.org/10.6028/NIST.MONO.175

19. Abadlia L., Gasser F., Khalouk K., Mayoufi M., Gasser J. G. Rev. Sci. Instrum. 2014, vol. 85, 095121. https://doi.org/10.1063/1.4896046

20. Loryan V. E., Karpov A. V., Boyarchenko O. D., Sytschev A. E. Int. J Self-Propag. High-Temp. Synth., 2022, vol. 31, pp. 273–275. https://doi.org/10.3103/S1061386222040069

21. Da Rosa A. V., Ordóñez J. C. In: Fundamentals of Renewable Energy Processes, Chapter 5 – Thermoelectricity, Academic Press, 2022, 4th ed., pp. 187–247. https://doi.org/10.1016/B978-0-12-816036-7.00015-4

22. Nicolas Marchal, Tristan da Câmara Santa Clara Gomes, Flavio Abreu Araujo, Luc Piraux. Nanoscale Res. Lett., 2020, vol. 15, 137. https://doi.org/10.1186/s11671-020-03343-8

23. Greig D. Thermoelectricity in Transition Metals. In: Blatt F. J., Schroeder P. A. (eds), Thermoelectricity in Metallic Conductors. Springer, Boston, MA, 1978, pp. 91–106. https://doi.org/10.1007/978-1-4757-6830-5_11

24. Laubitz M. J., Matsumura T., Kelly P. J. Can. J. of Phys., 1976, vol. 54, no. 1, pp. 92–102. https://doi.org/10.1139/p76-011


Review

For citations:


Karpov A.V., Sytschev A.E., Sivakova A.O. Device for measuring the Seebeck coeffi cient of thermoelectric materials in the temperature range 300–800 K. Izmeritel`naya Tekhnika. 2023;(8):67-72. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-8-67-72

Views: 183


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)