Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Vacuum large-aperture blackbody model in the temperature range 223.15–423.15 K for radiometric calibration of optoelectronic equipment for Earth observation

https://doi.org/10.32446/0368-1025it.2023-8-60-66

Abstract

The structure of the systems for the radiometric calibration of the remote sensing optoelectronic equipment in the infrared spectral range is presented. The analysis of existing facilities for the radiometric calibration of the remote sensing optoelectronic equipment in conditions of vacuum and low-background radiation was carried out. These facilities are based on using of the blackbody models as radiation sources, including reference sources based on the phase transition of pure metals, for example gallium or indium. The wide-aperture blackbody model LABB-380 with an aperture diameter of 380 mm in the temperature range from 223.15 K up to 423.15 K has been developed for a high-vacuum low-background stand, which is currently being developed at the Sciences Research Institute of Optoelectronic Instrumentation for the radiometric calibration of the remote sensing optoelectronic equipment. The results of calculating the normal effective emissivity of the surface of the LABB-380 in the temperature range from 223.15 K to 423.15 K in the spectral range from 3 to 20 μm are presented. The metrological characteristics of LABB-380 obtained during the transmission of a temperature unit from the zero discharge State Standard using a comparator based on the precision pyrometer HETRONIXS are investigated and presented. The instability of the LABB-380 radiation was 0.005 K according to the calibration results in the temperature range from 300.15 K to 390.15 K, and the extended temperature uncertainty was 0.66 K at the temperature of 300.15 K and 0.88 K at a temperature of 390.15 K.

About the Authors

N. L. Dovgilov
All-Russian Research Institute of Optical and Physical Measurements
Russian Federation

Nikolay L. Dovgilov

Moscow



S. P. Morozova
All-Russian Research Institute of Optical and Physical Measurements
Russian Federation

Svetlana P. Morozova

Moscow



S. V. Alekseev
All-Russian Research Institute of Optical and Physical Measurements
Russian Federation

Sergey V. Alekseev

Moscow



A. Yu. Dunaev
All-Russian Research Institute of Optical and Physical Measurements
Russian Federation

Alexander Yu. Dunaev

Moscow



V. R. Gavrilov
All-Russian Research Institute of Optical and Physical Measurements
Russian Federation

Valeriy R. Gavrilov

Moscow



I. Yu. Dmitriev
Scientific Research Institute of Optoelectronic Instrumentation
Russian Federation

Igor. Yu. Dmitriev

Sosnovy Bor, Leningrad region



P. M. Linskyi
Scientific Research Institute of Optoelectronic Instrumentation
Russian Federation

Pavel M. Linskyi

Sosnovy Bor, Leningrad region



V. N. Vasiliev
Scientific Research Institute of Optoelectronic Instrumentation
Russian Federation

Vladimir. N. Vasiliev

Sosnovy Bor, Leningrad region



References

1. Sapritsky V. I., Krutikov V. N., Ivanov V. S., et al. Metrologia, 2012, vol. 49, nо. 2, S9. https://doi.org/10.1088/0026-1394/49/2/S9

2. Ivanov V. S., Lisiansky B. E., Morozova S. P., Sapritsky V. I., Melenevsky U. A., Liang Yan Xi, Liang Pei. Metrologia, 2000, vol. 37, pp. 599–602. h ttps://doi.org/10.1088/0026-1394/37/5/58

3. Morozova S. P., Sapritsky V. I., Ivanov V. S., Lisiansky B. E., Melenevsky U. A., Xi L.Y., Pei L. Proceedings of TEMPMEKO ’99, 7th International Symposium on Temperature and Thermal Measurements in Industry and Science, ed. by J. F. Dubbeldam, M. J. de Groot, Edauw Johannissen bv, Delft, 1999, pp. 587–592.

4. Morozova S. P., Parfentiev N. A., Lisiansky B. E., Sapritsky V. I., Dovgilov N. L., Melenevsky U. A., Gutschwager B., Monte C., Hollandt J. I nt. J. Thermophys., 2008, vol. 29, pp. 341–351. https://doi.org/10.1007/s10765-007-0355-z

5. Monte C., Gutschwager B., Morozova S.P., Hollandt J. I nt. J. Thermophys., 2009, vol. 30, pp. 203–219. https://doi.org/10.1007/s10765-008-0442-9

6. Morozova S. P., Parfentiev N. A., Lisiansky B. E., Melenevsky U. A., Gutschwager B., Monte C., Hollandt J. I nt. J. Thermophys., 2010, vol. 31, pp.1809–1820. https://doi.org/10.1007/s10765-010-0843-4

7. Zhou J, Hao X, Song J, Xie C, Liu Y, Wang X. Optics Express, 2021, vol. 29, no. 8. https://doi.org/10.1364/OE.420272

8. Morozova S. P., Katysheva A. A., Panfi lov A. S., Krutikov V. N., Lisyansky B. E., Sapritsky V. I., Parfentyev N. A., Makolkin E. V., Mitrofanov B. D. Int. J. Thermophys., 2014, vol. 35, pp. 1330–1340. https://doi.org/10.1007/s10765-014-1721-2

9. Морозова С. П., Саприцкий В. И., Гаврилов В. Р., Дунаев А. Ю., Бормашов В. С., Гектин Ю. М., Зорин С. М., Трофимов Д. О. Методы и средства предполетной радиометрической калибровки оптико-электронной аппаратуры дистанционного зондирования Земли в инфракрасном диапазоне спектра // Системы наблюдения, мониторинга и дистанционного зондирования Земли: Материалы XVII научно-технической конференции. Калуга: Манускрипт, 2021. С. 242–247. [Morozova S. P., Sapritskiy V. I., Gavrilov V. R., Dunaev A. Yu., Bormashov V. S., Gektin Yu. M., Zorin S. M., Trofi mov D. O. Proceeding XVII Scientifi c and technical conference “Systems of observation, monitoring and the Earth remote sensing”, Kaluga, Manuscript Publ., 2021, pp. 242–247 (In Russ.)]

10. Sapritsky V. I., Prokhorov A. V. Metrologia, 1992, vol. 29, pp. 9–14. https://doi.org/10.1364/AO.34.005645


Review

For citations:


Dovgilov N.L., Morozova S.P., Alekseev S.V., Dunaev A.Yu., Gavrilov V.R., Dmitriev I.Yu., Linskyi P.M., Vasiliev V.N. Vacuum large-aperture blackbody model in the temperature range 223.15–423.15 K for radiometric calibration of optoelectronic equipment for Earth observation. Izmeritel`naya Tekhnika. 2023;(8):60-66. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-8-60-66

Views: 168


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)