

The history of the development of the capillary method of measuring kinematic viscosity: from the Lomonosov viscometer to the information measuring system
https://doi.org/10.32446/0368-1025it.2023-8-53-59
Abstract
The history of the development of the capillary method of viscosity measurements is described and the tasks of automation and improvement of this method are considered. A comparative analysis of the currently relevant vibrational, rotational, capillary methods of measuring the viscosity of a liquid and the measuring instruments implementing them is given. The State verifi cation scheme for viscosity measuring instruments to represent the role of the capillary method in general and glass capillary viscometers in particular in this structure is briefl y described. The reasons why the capillary method is used in many countries as the main high-precision method for measuring the viscosity of liquids are considered. A detailed derivation of the formula for calculating the kinematic viscosity of the liquid under study is given. As one of the possible ways to further develop the capillary method of measuring kinematic viscosity, it is proposed to create an information-measuring system for measuring the kinematic viscosity of the liquid under study. The principle of operation of this system is described and plans for its implementation are formulated. It is shown that it is possible to increase the accuracy of measurements of the viscosity of liquid media by the capillary method by automating measurements and installing detectors of a certain type. The results of the performed analysis are relevant to ensure the uniformity of viscosity measurements in the Russian Federation.
About the Author
A. V. MirgorodskayaRussian Federation
Anastasia V. Mirgorodskaya
St. Petersburg
References
1. Mogilevskij M. A. Leonardo on the Nature of Water. Science First Hand, 2007, vol. 17, no. 5, pp. 50–61. (In Russ.)
2. Alferova M. V. Leonardo da Vinchi. Nastojashhaja istorija genija [Leonardo da Vinci. The real story of a genius], Moscow, AST, 2015, 286 p. (In Russ.)
3. Mizerovskij L. N., Smirnov P. R. Russian Journal of General Chemistry, 2020, no. 64(1), pp. 3–12. (In Russ.) https://doi.org/10.6060/rcj.2020641.1
4. Newton Issac (1643–1727). Philosophiæ naturalis principia mathematica, Londini: Jussu Societatis Regiae ac typis Josephi Streater, Prostat apud plures bibliopolas, 1687. (In Lat.)
5. Lavygina I. A. Osnovy prakticheskoj reologii i reometrii [Fundamentals of practical rheology and rheometry], Moscow, KolosS Publ., 2003, 312 p. (In Russ.)
6. Krutogolov V. D., Kulakov M. V. Rotacionnye viskozimetry [Rotary viscometers], Moscow, Mashinostroenie Publ., 1984, 112 p. (In Russ.)
7. Zacerkljannyj O. V. Actual problems of piezoelectric instrumentation, Proceedings of the VIII All-Russian Scientifi c and Technical Conference, Rostov-on-Don, 10–15 September, 2012, Rostov-on-Don, Izdatel’stvo Juzhnogo federal’nogo universiteta Publ., 2012, p. 45. (In Russ.)
8. Golin G. M., Filonovich S. R. Klassiki fi zicheskoj nauki (s drevnejshih vremen do nachala XX v.) [Classics of physical science (from ancient times to the beginning of the XX century)], Moscow, Vysshaya shkola Publ., 1989, 576 p. (In Russ.)
9. Leonard Jejler. Obshchie zakony dvizheniya zhidkostej. Izvestiya RAN. Mekhanika zhidkosti i gaza, 1999, no. 6, pp. 26–54. (In Russ.)
10. Litineckij I. B. M. V. Lomonosov – osnovopolozhnik otechestvennogo priborostroenija [M. V. Lomonosov – the founder of Russian instrument making], Moscow, Leningrad, Gostehijedat Publ., 1952, 160 p. (In Russ.)
11. Bilyk V. Ya. Pribor Lomonosova dlya issledovaniya zhidkostej [Lomonosov device for the study of liquids], Moscow, Izdatel’stvo AN SSSR Publ., 1960, 5 p. (In Russ.)
12. Menshutkin B.N. Zhizneopisanie Mihaila Vasil’evicha Lomonosova [Biography of Mikhail Vasilyevich Lomonosov], Moscow, Leningrad, Izdatel’stvo AN SSSR Publ., 1937, 238 p. (In Russ.)
13. Jebert G. Kratkij spravochnik po fi zike: spravochnoe izdanie [A short guide to Physics: reference edition], Moscow, Fizmatgiz Publ., 1963, 552 p. (In Russ.)
14. Volarovich M. P. Izvestiya Akademii nauk SSSR, 1947, no. 1, pp. 3–21. (In Russ.)
15. Curko A. A., Demyanov A. A., Vinogradov G. V. Proceeding of the 27rd Symposium of rheology, Tver, 8–13 September, 2014, Moscow, Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences, Lomonosov Moscow State University Publ., 2014, pp. 72–73. (In Russ.)
16. Stepanov L. P. Izmerenie vyazkosti zhidkostey [Measurement of viscosity of liquids]. Moscow, without a publisher, 1966, 43 p. (In Russ.)
17. Demyanov A. A., Neklyudova A. A. National primary standard of the unit kinematic viscosity of the liquid. Proceeding of the 28th Symposium on Rheology, Moscow, 28 September – 02 October, 2016, Moscow, Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences Publ., 2016, pp. 74–75. (In Russ.)
18. Demyanov A. A., Tsurko, A. A. Gosudarstvennyy pervichnyy etalon edinitsy kinematicheskoy vyazkosti zhidkosti v diapazone ot 4∙10–7 ÷ 1∙10–1 m2/s (GET 17-96) [The State primary standard of a unit of liquid kinematic viscosity at a range from 4·10–7 ÷ ÷ 1·10–1 m2/s (GET 17-96)]. In book: Rossiyskaya metrologicheskaya entsiklopediya [Russian metrological encyclopedia], St. Petersburg, Gumanistika Publ., 2015, vol. 1, pp. 380–382. (In Russ.)
19. Chekirda K. V., Demyanov A. A., Nekliudova A. A., Domostroev A. V., Sulaberidze V. Sh. Measurement Techniques, 2022, vol. 65, no. 7, pp. 487–492. https://doi.org/10.1007/s11018-023-02108-w
20. Nekliudova A. A., Demyanov A. A., Sulaberidze V. Sh. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2022, no. 3(140), pp. 103–114. (In Russ.) https://doi.org/10.18698/0236-3933-2022-3-103-114
21. Chupaev A. V. Modernization of capillary method of viscosity measurement, Izvestija vuzov. Problemy jenergetiki, 2010, no. 1-2, pp. 137–140. (In Russ.)
Review
For citations:
Mirgorodskaya A.V. The history of the development of the capillary method of measuring kinematic viscosity: from the Lomonosov viscometer to the information measuring system. Izmeritel`naya Tekhnika. 2023;(8):53-59. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-8-53-59