

Calibration of intrinsic parameters of a star tracker’s digital camera based on ground-based stars observations, taking into account atmospheric refraction and light aberration
https://doi.org/10.32446/0368-1025it.2023-8-42-52
Abstract
The mathematical model of a digital image contains a set of parameters called camera's intrinsic elements. The numerical values of the elements are unique and must be determined through the individual calibration. The paper considers the problem of fi ve intrinsic elements calibration: the focal length of the lens, two coordinates of the principial point of the image, and two second-order radial distortion coeffi cients. The stars observed by the calibrated camera from the Earth's surface are used as a calibration test pattern. The stellar coordinates are cataloged with very high accuracy, which makes it possible to get rid of complex calibration equipment and reduce the calibration problem to a particular problem of digital image processing. The positions of stars observed from the Earth's surface are distorted by a velocity aberration and atmospheric refraction. These effects are taken into account by introducing distortions into the direction vectors of stars taken from the star catalog. Two approaches to solving the calibration problem are considered, which take into account the unknown orientation of the calibrated camera relative to the Earth in different ways. It has been experimentally shown that both approaches lead to the same results. The discrepancy in calibration measurements after calibration decreases by a factor of 32, to a value on the order of the irremovable angular error in determining the apparent position of a star in a turbulent atmosphere. The results of individual calibration of the camera's intrinsic elements are used in the fi rmware of the star tracker to correct the systematic errors in attitude measurements.
About the Authors
N. N. VasilyukRussian Federation
Nikolay N. Vasilyuk
Moscow
G. A. Nefedov
Russian Federation
Grigorii A. Nefedov
Moscow
E. A. Sidorova
Russian Federation
Ekaterina A. Sidorova
Moscow
N. O. Shagimuratova
Russian Federation
Natalya O. Shagimuratova
Moscow
References
1. The Hipparcos and Tycho Catalogues, European Space Agency, 1997, available at: https://www.cosmos.esa.int/documents/532822/546213/vol4_all.pdf/cc67cc99-8094-48d6-9f4d-30df294b7567 (accessed: 17.07.2023).
2. Segon D. How many stars are needed for a good camera calibration? WGN, Journal of the International Meteor Organization, 2009, vol. 37, no. 3, pp. 80–83, available at: https://www.researchgate.net/publication/241519225_How_many_stars_are_needed_for_a_good_camera_calibration (accessed: 17.07.2023).
3. Smetanin P. S., Avanesov G. A., Bessonov R. V., Kurkina A. N., Nikitin A. V. Geometric calibration of high-precision star tracker by starry sky, Sovr. Probl. DZZ Kosm. 2017, vol. 14, no. 2, pp. 9–23. (In Russ.) https://doi.org/10.21046/2070-7401-2017-14-2-9-23
4. Samaan M., Lockhart S., Holt G., Mamich H. On-Ground Calibration and Optical Alignment for the Orion Optical Navigation Camera, John L. Junkins Dynamical Systems Symposium, May 20–21, 2018, College Station, TX, USA, available at: https://ntrs.nasa.gov/citations/20180004169 (accessed: 17.07.2023).
5. Enright J., Jovanovic I., Vaz B. IEEE Sensors Journal, 2018, vol. 18, no. 18, pp. 7708–7720. https://doi.org/10.1109/JSEN.2018.2857621
6. Chen Z., Zheng Y., Zhan Y., Li C., Chen B., Zhang H. Journal of Physics: Conference Series, 2022, vol. 2235, 012053. https://doi.org/10.1088/1742-6596/2235/1/012053
7. Chen X., Xing F., You Z., Zhong X., Qi K. IEEE Transactions on Geoscience and Remote Sensing, 2022, vol. 60, 5608211. https://doi.org/10.1109/TGRS.2021.3100841
8. Yoon H., Baeck K, Wi J. International Journal of Aeronautical and Space Sciences, 2022, vol. 23, рр. 180–191. https://doi.org/10.1007/s42405-021-00432-5
9. Fedoseev V. I., Kolosov M. P. Optiko-elektronnye pribory orientacii I navigacii kosmicheskih apparatov [Optic-electronic devices for orientation and navigation of space vehicles], Moscow, Logos Publ., 2007, 247 p. (In Russ.)
10. Avanesov G. A., Kondratieva T. V., Nikitin A. V. Mehanika, upravlenie i informatika (In books), 2009, no. 1, pp. 421–446. (In Russ.)
11. Bragin A. A. Izvestia vuzov. Geodesy and aerophotosurveying, 2009, no. 5, pp. 73–80. (In Russ.)
12. Conrady A. Decentered Lens Systems. Monthly Notices of the Royal Astronomical Society, 1919, vol. 79, no. 5, pp. 384–390. https://doi.org/10.1093/mnras/79.5.384
13. Brown D. C. Decentering distortion of lenses. Photogrammetric Engineering and Remote Sensing, 1966, vol. 32, no. 3, pp. 444–462.
14. Vasilyuk N. N. Computer optics, 2023, vol. 47, no. 1, pp. 79–91. (In Russ.)
15. Prokhorov M. E., Zakharov A. I., Tuchin M. S. Mehanika, upravlenie i informatika (In books), 2013, no. 1(13), pp. 80–90. (In Russ.)
16. Scheglov P. V. Problemy opticheskoj astronomii [Problems of optical astronomy], Moscow, Nauka Publ., 1980, 272 p. (In Russ.)
17. Garanin S. G., Zykov L. I., Klimov A. N. Kulikov S. M., Smyshlyaev S. P., Stepanov V. V., Syundyukov A. V. Journal of Optical Technology, 2017, vol. 84, no. 12, pp. 816–821. https://doi.org/10.1364/JOT.84.000816
18. Duffett-Smith P. Practical astronomy with your calculator, Cambrige University Press, 1981, 181 p.
19. Vasilyuk N. N. Aerospace Instrument-Making, 2022, no. 10, pp. 17–31. (In Russ.) https://doi.org/10.25791/aviakosmos.10.2022.1302
20. Vasilyuk N. N. Aerospace Instrument-Making, 2022, no. 9, pp. 31–44. (In Russ.) https://doi.org/10.25791/aviakosmos.9.2022.1299
21. Mudrov V. I., Kushko V. L. Metody obrabotki izmerenij: Kvazipravdopodobnye ocenki [Methods of measurements processing: Quasi-likely estimates], Moscow, Radio i Svyaz Publ., 1983, 302 p. (In Russ.)
22. Markley F. L., Mortari D. New developments in quaternion estimation from vector observations. Advances in the Astronautical Sciences, 2000, vol. 106, pp. 373–393, available at: http://wayback.archive-it.org/1792/20100129034039/http://hdl.handle.net/2060/20000034107 (accessed: 17.07.2023).
Review
For citations:
Vasilyuk N.N., Nefedov G.A., Sidorova E.A., Shagimuratova N.O. Calibration of intrinsic parameters of a star tracker’s digital camera based on ground-based stars observations, taking into account atmospheric refraction and light aberration. Izmeritel`naya Tekhnika. 2023;(8):42-52. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-8-42-52