Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Primary standard for complex units of permittivity at frequency range 0.1–178.4 GHz GET 110-2023

https://doi.org/10.32446/0368-1025it.2023-12-17

Abstract

The article is dedicated to research in the fi eld of measuring the dielectric parameters of materials. The aim of the research is to study promising methods for measuring the complex dielectric permittivity of weakly absorbing materials in the decimeter wavelength range, as well as the non-resonant method for measuring the dielectric parameters of materials with high dielectric losses. In order to achieve the set goal of improving the state primary standard of complex dielectric permittivity in the frequency range from 1 to 178.4 GHz, tasks were set to expand the frequency range to 0.1 GHz and the range of reproducible values of the dielectric loss tangent to 10–1. As a result of the improvement, new equipment was introduced into the composition of the standard, and new measurement methods were developed. To measure the complex dielectric permittivity of weakly absorbing materials in the decimeter wavelength range, a resonant measurement method in a coaxial resonator with a shortening capacitive gap and a measurement method in a bulk H011-resonator with dielectric fi lling were developed. To measure elevated dielectric losses up to 10–2–10–1, a measurement method using a non-resonant measuring transducer based on a shielded dielectric waveguide with a measured dielectric sample as such a waveguide has been developed. The developed methods are applied in the Primary standard of complex dielectric permittivity in the frequency range from 0.1 to 178.4 GHz, GET 110-2023. The frequency range of the standard is 0.1–178.4 GHz, the range of reproducible values of relative dielectric permittivity is 1.2–500, dielectric loss tangent 10–8–10–1. The scope of application of GET 110-2023 is metrological support of dielectric control in production of radio frequency cables, telecommunication equipment, electronic components, etc.

About the Authors

V. N. Egorov
East-Siberian Branch of Russian Metrological Institute of Technical Physics and Radio Engineering
Russian Federation

Viktor N. Egorov

Irkutsk



E. Yu. Tokareva
East-Siberian Branch of Russian Metrological Institute of Technical Physics and Radio Engineering
Russian Federation

Elena Yu. Tokareva

Irkutsk



E. K. Prokop’eva
East-Siberian Branch of Russian Metrological Institute of Technical Physics and Radio Engineering
Russian Federation

Ekaterina K. Prokop’eva

Irkutsk



I. M. Malay
Russian Metrological Institute of Technical Physics and Radio Engineering
Russian Federation

Ivan M. Malay

Mendeleevo, Moscow Region



Le Quang Tuyen
Irkutsk National Research Technical University
Russian Federation

Le Quang Tuyen

Irkutsk



References

1. Егоров В. Н., Кащенко М. В., Масалов В. Л., Токарева Е. Ю., Нонг Куок Куанг. Государственный первичный эталон единиц комплексной диэлектрической проницаемости в диапазоне частот от 1 до 178,4 ГГц // Измерительная техника. 2014. № 1. С. 3–7. https://www.elibrary.ru/ryetov [Egorov V. N., Kashchenko M. V., Masalov V. L., Tokareva E. Yu., Quang N. Q. Measurement Techniques, 2014, vol. 57, no. 1, pp. 1–7 https://doi.org/10.1007/s11018-014-0398-z ]

2. Baker-Jarvis J. R., Riddle B. F. Dielectric Measurements Using a Reentrant Cavity: Mode-Matching Analysis, Technical Note (NIST TN), National Institute of Standards and Technology, Gaithersburg, MD, 1996, vol. 1384, pp. 1–13.

3. Carter R. G., Feng J., Becker U. IEEE Transactions on Microwave Theory and Techniques, Dec. 2007, vol. 55, no. 12, pp. 2531–2538. https://doi.org/10.1109/TMTT.2007.909750

4. Kanai Y., Tsukamoto T., Miyakawa M., Kashiwa T. IEEE Transactions on Magnetics, July 2000, vol. 36, no. 4, pp. 1750–1753. https://doi.org/10.1109/20.877782

5. Thompson F., Haigh A. D., Dillon B. M., Gibson A. A. P. IEE Proceedings – Science, Measurement and Technology, 2003, vol. 150, no. 3, pp. 113–117. https://doi.org/10.1049/ip-smt:20030011

6. Baker-Jarvis J. Transmission/Refl ection and Short-Circuit Line Permittivity Measurement Methods, Technical Note (NIST TN), National Institute of Standards and Technology, Gaithersburg, MD, 1990, vol. 1341, pp. 78–148.

7. Kato Y., Horibe M., Ameya M., Kurokawa S., Shimada Y. New uncertainty analysis and simplifi ed verifi cation method for permittivity measurements using the Transmission/Refl ection method by utilizing a weighted factor, 29th Conference on Precision Electromagnetic Measurements (CPEM 2014), Rio de Janeiro, Brazil, 2014, pp. 186–187. https://doi.org/10.1109/TIM.2015.2401231

8. Ligthart L. P. IEEE Transactions on Microwave Theory and Techniques, Mar. 1983, vol. 31, no. 3, pp. 249–254. https://doi.org/10.1109/TMTT.1983.1131471

9. Коаксиальный измерительный резонатор с неизлучающим окном для ввода образца: пат. № 2626746 РФ / В. Н. Егоров, В. В. Костромин // Изобретения. Полезные модели. 2017. № 22. [Egorov V. N., Kostromin V. V. RF Patent no. 2626746, Inventions. Utility models, no. 22 (2017)]

10. Коаксиальный измерительный резонатор с цилиндрическим электродом и регулируемым емкостным зазором: пат. № 2680109 РФ / В. Н. Егоров, Ле Куанг Туен // Изобретения. Полезные модели. 2019. № 5. [Egorov V. N., Le Kuang Tuen, RF Patent no. 2680109, Inventions. Utility models, no. 5 (2019)]

11. Добромыслов В. С. Колебания в металлодиэлектрическом резонаторе с лейкосапфировым стержнем // Радиотехника и электроника. 1988. Т. 33. № 4. С. 705–715. [Dobromyslov V. S. Radiotekhnika i elektronika [Radio engineering and electronics], 1988, vol. 33, no. 4, pp. 705–715 (In Russ.)]


Review

For citations:


Egorov V.N., Tokareva E.Yu., Prokop’eva E.K., Malay I.M., Tuyen L. Primary standard for complex units of permittivity at frequency range 0.1–178.4 GHz GET 110-2023. Izmeritel`naya Tekhnika. 2023;(8):12-17. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-12-17

Views: 155


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)