

Determination of ef ective thickness of cemented steel layer
https://doi.org/10.32446/0368-1025it.2023-7-68-72
Abstract
The problems of increasing the strength of high-loaded steel parts of transmissions of energy-saturated machines are considered. It is noted that, along with hardness, an important parameter of the hardened cemented steel layer is its effective thickness the distance from the surface of the sample (part) to the zone with hardness 50 HRC (529 HV0.5). It is shown that great infl uence on accuracy of its defi nition have unavoidable banding of metal in the area of hardness measurement and an instrumental error of hardness measurement. A method of increasing the accuracy of determining the effective thickness of the cemented layer, based on interpolation by polynomial of the second degree of distribution of experimentally measured hardness values HV0.5 in an extended range of changing distances from the surface of the article to the hardness measurement HV0.5 is offered. Error of defi nition of an effective thickness of the cemented layer is reduced at the expense of expansion of area of change of hardness HV0.5 in an analyzed zone with approximation of its monotonous change in this area and the subsequent solution of the received square equation. Approximating polynomial statistically correctly refl ects the character of hardness change HV0.5 of cemented steel in the analyzed area depending on the distance from the workpiece surface to the hardness measurement place. The effectiveness of the method was confi rmed when determining the effective thickness of the grouted layer of a sample of 18CrNiGt steel after carburizing and hardening. The obtained results will be useful in the development of optimal regimes of carburizing of high-loaded gearwheels of automobile and tractor transmissions.
About the Authors
S. G. SandomirskiRussian Federation
Sergei G. Sandomirski
Minsk
A. L. Val'ko
Russian Federation
Aleksander L. Val'ko
Minsk
S. P. Rudenko
Russian Federation
Sergei P. Rudenko
Minsk
References
1. Rudenko S. P., Valko A. L., Sandomirskii S. G. Application of promising sparingly alloyed steels for gears of mobile machines. Mechanics of Machines, Mechanisms and Materials, 2019, no. 4, pp. 61–69. (In Russ.)
2. Lahtin Ju. M., Leont’eva V. P. Materialovedenie, Textbook for Mechanical Engineering Universities, Moscow, Mashinostroenie Publ., 1980, 493 p. (In Russ.)
3. Susin A. A. Himiko-termicheskoe uprochnenie vysokonaprjazhennyh detalej, Minsk, Belorusskaja nauka Publ., 1999, 175 p. (In Russ.)
4. Rudenko S. P., Val’ko A. L. Metal Science and Heat Treatment, 2017, vol. 59, no. 1-2, pp. 60–64. https://doi.org/10.1007/s11041-017-0103-3
5. Rudenko S. P., Valko A. L., Sandomirskii S. G. Mechanics of Machines, Mechanisms and Materials, 2022, no. 3 (60), pp. 61–67. (In Russ.) https://doi.org/10.46864/1995-0470-2022-3-60-61-67
6. Urazov O. V., Egorov V. G., Danilov A. G., Drozdov I. G. Bulletin of the Voronezh State Technical University, 2022, vol. 18, no. 3, pp. 124–132. (In Russ.) https://doi.org/10.36622/VSTU.2022.18.3.018
7. Makarov A. V., Luchko S. N., Shabashov V. A. et al. The Physics of Metals and Metallography, 2017, vol. 118, no. 1, pp. 52– 64. https://doi.org/10.1134/S0031918X17010045
8. Bulychev S. I., Maljutin V. M., Uzincev O. E. Opredelenie mehanicheskih svojstv po tverdosti na osnove osnovnyh parametrov podobija. Plasticheskaja deformacija v otpechatke. Deformacija i razrushenie materialov, 2006, no 5, pp. 19–23. (In Russ.)
9. Stakjan M. G., Sogomonjan V. K. Izmerenie mikrotverdosti v zonah ustalostnogo razrushenija valov. Bulletin of the State Engineering University of Armenia (Polytechnic). Series: Mechanics, Mechanical Engineering, Mechanical Engineering, 2013, vol. 16, no. 2, pp. 64–69. (In Russ.)
10. Krivonosova E. A. Dimension of hight deformaition zone on the fatigue destruction of welded joints. Bulletin PNRPU. Mechanical engineering, materials science, 2012, vol. 14, no. 2, pp. 71–76. (In Russ.)
11. Galechjan N. A. Ocenki processa ustalostnogo razrushenija valov metodom izmerenija mikrotverdosti, Proceedings of the National Academy of Sciences of Armenia and the State Engineering University of Armenia. Ser. of Technical Sciences, 2000, vol. 53, no. 3, pp. 281–286. (In Russ.)
12. Zvonarev I. E., Ivanov S. L., Fokin A. S., Semenov M. A. Ocenka udel’noj raboty razrushenija ne standartnyh obrazcov s uchetom lokal’noj tverdosti v zone ih razrushenija. Proceedings of the XIV International Extramural Scientifi c and Practical Conference “Technical Sciences – from Theory to Practice”, Novosibirsk, 10 December 2012, pp. 53–62. (In Russ.)
13. Sandomirski S. G., Measurement Techniques, vol. 57, issue 10 (2015), pp. 1113–1120. https://doi.org/10.1007/s11018-015-0588-3
Review
For citations:
Sandomirski S.G., Val'ko A.L., Rudenko S.P. Determination of ef ective thickness of cemented steel layer. Izmeritel`naya Tekhnika. 2023;(7):68-72. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-7-68-72