

The results of navigation spacecrafts observations with asymmetry of the onboard antenna amplitude radiation pattern
https://doi.org/10.32446/0368-1025it.2023-7-55-59
Abstract
The received in the Earth surface layer satellite radio signal power depends on the space navigation vehicle onboard antenna parameters, primarily it depends on the amplitude radiation pattern shape. The spacecraft onboard antenna radiation pattern has a complex shape in order to compensate for radio navigation signal power changes as a result of the removal (or approach) of the navigation satellite from the signal consumer. For this reason, the shape of the radiation pattern must have axial symmetry, i.e. it has to be close to the rotation fi gure. As a result of the global navigation satellite system GLONASS radio navigation signals energy characteristics monitoring, VNIIFTRI evaluated amplitude radiation patterns of the onboard antenna-feeder devices of satellites from the orbital constellation, the amplitude radiation patterns asymmetry of some of them was discovered. The asymmetry of the radiation pattern leads to the radio navigation signal (received by the consumer) power dependence on the device angle of the, i.e. on the position of the onboard radiating antenna system of the relative to the signals consumer. The probable reason for the asymmetry is the gradual aging of the active devices in the antenna system. The article purpose is to pay attention of competent specialists to the existing problem.
About the Authors
A. S. ZavgorodniiRussian Federation
Aleksei S. Zavgorodnii
Mendeleevo, Moscow region
V. L. Voronov
Russian Federation
Vladimir L. Voronov
Mendeleevo, Moscow region
I. V. Ryabov
Russian Federation
Ivan V. Ryabov
Mendeleevo, Moscow region
A. A. Chigvincev
Russian Federation
Andrei A. Chigvincev
Irkutsk
References
1. Mikhailov M. I., Muzalevskiy K. V., Mironov V. L. Ice thickness measurements at freshwater lake and river using GLONASS and GPS signals. Sovremennye problemy distantsionnogo zondirovaniya zemli iz kosmosa, 2017, vol. 14, no. 2, pp. 167–174. (In Russ.)
2. Kiryushkin V. V., Tcherepanov D. A. Bistatic location of air targets by signals of satellite navigating systems. Bulletin of the Voronezh State Technical University, 2010, vol. 6, no. 11, pp. 33–38. (In Russ.)
3. Gusmanov R. U., Kimaev K. Yu. Ispol’zovanie global’noj navigacionnoj sputnikovoj sistemy GLONASS s cel’yu rascheta ekonomicheskoj effektivnosti sevooborotov. Nikonovskie chteniya, 2012, no. 17, рр. 315–317. (In Russ.)
4. Zavgorodniy A. S., Voronov V. L., Ryabov I. V. Metrologicheskij kompleks ocenki energeticheskih harakteristik signalov navigacionnyh kosmicheskih apparatov GNSS “GLONASS”. Al′manac of Modern Metrology, 2016, no. 7, рр. 124–138. (In Russ.)
5. Zavgorodnii A. S., Voronov V. L., Ryabov I. V. et al. Measurement Techniques, 2019, vol. 61, no. 11, pp. 1066–1073. https://doi.org/10.1007/s11018-019-01550-z
6. Fateev A. V., Emelyanov D. V., Tentilov U. A., Ovchinnikov A. V. Prohozhdenie osobyh uchastkov orbity navigacionnym kosmicheskim apparatom sistemy Glonass. The Siberian Aerospace Journal, 2014, no. 4(56), рр. 126–131. (In Russ.)
7. Willard A. Marquis, Daniel L. Reigh. Navigation, 2015, no. 62(4), pр. 329–347. https://doi.org/10.1002/navi.123
8. Vlasov I. B., Ryzhov V. S. Patent RU 2687512 C1. Inventions. Utility Models, no. 14 (2019).
9. Zavgorodnii A. S. Proc. of the 2022 IEEE 2nd International Conference Problems of Informatics, Electronics and Radio Engineering (PIERE), Novosibirsk, 11–13 November, 2022, Novosibirsk State Technical University. https://doi.org/10.1109/SIBIRCON56155.2022.10017012
Review
For citations:
Zavgorodnii A.S., Voronov V.L., Ryabov I.V., Chigvincev A.A. The results of navigation spacecrafts observations with asymmetry of the onboard antenna amplitude radiation pattern. Izmeritel`naya Tekhnika. 2023;(7):55-59. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-7-55-59