

Determination of the code reliability of digital angle converters
https://doi.org/10.32446/0368-1025it.2023-7-24-29
Abstract
To measure the angular motion parameters of various kinds of objects, digital angle converters are widely used, which differ in the output electrical interface using a parallel or serial method of code transmission. Currently, there is no single approach to the metrological assessment of the accuracy characteristics of these digital angle converters. Such an integral assessment can be the code reliability of the converter, which characterizes the probability that the value of the measured angle corresponds to the calculated quantum, the code of which is read. Now there is an analytical method for calculating the code reliability used for digital angle converters with parallel code transmission. The article proposes an algebraic method for calculating the code reliability. Unlike the analytical method, it lacks the disadvantages of approximating the error histogram of the digital angle converters by random variable distribution functions. The conducted studies have shown that the algebraic method of calculating the code reliability can be used for the digital angle converters, with parallel and serial code transmission. It is shown that in order to fi nd the unevenness of the angular scale of the digital angle converters using a dynamic goniometer with an incremental angle sensor, it is necessary to center the array of measured error values. The results obtained can be used in measuring technology and metrology for digital angle converters calibration. They are of interest to specialists working in the fi eld of metrology of angular measurements, measuring equipment, digital angle converters manufacturers.
About the Author
P. A. PavlovRussian Federation
Petr A. Pavlov
St. Petersburg
References
1. Agapov M. Yu., Burnashev M. N., Lukyanov D. P., etc. Izvestiya SPbGETU “LETI”, 2008, no. 3, pp. 55–64 (In Russ.)
2. Burnashev M. N., Pavlov P. A., Filatov Yu. V. Quantum Electronics, 2013, vol. 43(2), pp. 130–138. https://doi.org/10.1070/QE2013v043n02ABEH015045
3. Pavlov P. A., Filatov Yu. V., Burnashev M. N., etc. Collection of reports of the international scientifi c conference “Science and Education: technology of success”, St. Petersburg, ETU “LETI” Publ., 2016, pp. 63–67 (In Russ.)
4. Qin S.,Huang Z., Wang X. IEEE Trans. Instrum. Meas., 2010, vol. 59(3), pp. 506–511. https://doi.org/10.1109/TIM.2009.2022104
5. Filatov Yu. V., Loukianov D. P., Probst R. Metrologia, 1997, vol. 34, pp. 343–351. https://doi.org/10.1088/0026-1394/34/4/7
6. Watanabe T., Fujimoto H., Nakayama K., Masuda T., Kajitani M. SPIE Proceedings, 2001, vol. 4401, 267. https://doi.org/10.1117/12.445630
7. Beverini N., Carelli G., Maccioni E., Pisani M., Ortolan A. Proceedings International Conference Laser Optics, LO-2014, 2014, 6886319. http://dx.doi.org/10.1109/LO.2014.6886319
8. Domrachev V. G., Meyko B. S. Cifrovye preobrazovateli ugla: principy postroeniya, teoriya tochnosti, metody upravleniya Moskow, Energoatomizdat Publ., 1984, 328 p. (In Russ.)
9. Levin B. R. Teoreticheskie osnovy statisticheskoj radiotekhniki, Moscow, Radio I Svyaz Publ., 1989, 656 p. (In Russ.)
10. Bendat Julius S., Piersol Allan G. Measurement and analysis of random data, New York, Wiley, 1966, 381 р.
11. Anikst D. A., Konstantinovich K. M., Meskin I. V. et al. Vysokotochnye uglovye izmereniya, ed. Yu. G. Yakushenkov, Moscow, Mashinostroenie, 1987, 480 p. (In Russ.)
12. Demchuk V. Yu. Journal of Optical Technology, 2006, vol. 73, рр. 617–621. https://doi.org/10.1364/JOT.73.000617
13. Vishnyakov G. N., Minaev V. L., Bochkareva S. S. Measurement Techniques, 2022, vol. 65, no. 5, pp. 307–314. https://doi.org/10.1007/s11018-022-02090-9
Review
For citations:
Pavlov P.A. Determination of the code reliability of digital angle converters. Izmeritel`naya Tekhnika. 2023;(7):24-29. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-7-24-29