Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Analysis of operation models of complex technical systems

https://doi.org/10.32446/0368-1025it.2023-7-15-23

Abstract

A retrospective analysis of existing models of operation of complex technical systems with metrological support has been carried out. The models of failures and degradation of complex technical systems based on diffusion monotone and diffusion non-monotone distributions, the model of failures and degradation of complex technical systems based on three-parameter diffusion distribution are described. Failure and degradation models are used together with the classical model of E. I. Sychev and more complex models developed on its basis. For complex technical systems that allow full resource recovery during repair, a model of operation of complex technical systems has been developed, taking into account 4 degrees (groups) of degradation of complex technical systems. The model is described by a system of linear algebraic equations of the 21st order. The functional dependence of the stationary readiness coeffi cient on the calibration intervals of measuring instruments included in complex technical systems of various degradation groups is constructed. For complex technical systems that do not allow full restoration of the resource during repair, a model of operation of complex technical systems has been developed, taking into account 3 groups of degradation of complex technical systems. The model is described by a system of linear algebraic equations of the 24th order. The model allows you to simulate the main stages of the life cycle of a fl eet of complex technical systems, including, among other things, the processes of updating a fl eet of complex technical systems through the purchase of new samples and upgrades, existing samples of complex technical systems. The models presented in the article allow calculating optimal values of intervals between verifi cations and optimal values of tolerances for controlled parameters for different groups of degradation of complex technical systems with metrological support, ensuring the maximum level of stationary availability coeffi cient. The developed set of models can be used to classify complex technical systems in order to set requirements for their metrological support. The models can also be used to calculate the technical and economic indicators of the development of a fl eet of complex technical systems.

About the Authors

D. S. Ershov
Moscow Polytechnic University;
Russian Federation

Denis S. Ershov

Moscow



A. V. Malakhov
Moscow Polytechnic University
Russian Federation

 Alexander V. Malakhov

Moscow



A. V. Talala
Scientific and Technical Committee (Metrological Service of the Armed Forces of the Russian Federation)
Russian Federation

Anton V. Talala

Moscow



R. Z. Khairullin
Metrological Center of the Ministry of Defense of the Russian Federation
Russian Federation

Rustam Z. Khairullin

Mytishchi, Moscow region



References

1. Volkov L. I. Upravlenie ekspluataciey letatelnyh kompleksov, Moscow, Vysshaya shkola Publ., 1981, 368 p. (In Russ.)

2. Sychev E. I. Metrologicheskoe obespechenie radioelektronnoj apparatury (metody analiza), Moscow, Tat’yanin den’ Publ., 1994, 277 p. (In Russ.)

3. Mishchenko V. I. Jevoljucija modelej processa jekspluatacii, Vestnik akademii voennykh nauk, 2003, no. 4, р. 200 (In Russ.)

4. Mishchenko V. I., Kravtsov A. N., Mamleev T. F. Measurement Techniques, 2021, vol. 64, no. 4, pp. 289–295. h ttps://doi.org/10.1007/s11018-021-01931-3

5. Khayrullin R. Z., Popenkov A. J. 2018 Eleventh International Conference “Management of large-scale system development (MLSD)”, Moscow, Russia, 2018, pp. 1–4. https://doi.org/10.1109/MLSD.2018.8551917

6. Popenkov A. J., Fufaeva O. V., Khayrullin R. Z. Analysis of models of operation of special equipment with degrading metrological support, News of the Tula state university. Technical sciences, 2022, no. 7, pp. 247–254. (In Russ.)

7. Khayrullin R. Z. Measurement Techniques, 2022, vol. 65, no. 8, pp. 569–576. https://doi.org/10.1007/s11018-023-02122-y

8. Khayrullin R. Z., Kornev А. S., Kostoglotov А. А., Lazarenko S. V. Measurement Techniques, 2020, vol. 63, no. 9, pp. 680–685. https://doi.org/10.1007/s11018-021-01839-y

9. David Vališ, Marie Forbelská, Zdeněk Vintr, Jakub Gajewski. Measurement, 2020, vol. 164, 108076. https://doi.org/10.1016/j.measurement.2020.108076

10. Ma J., Fouladirad M., Grall A. Energy, 2018, vol. 164, pp. 316– 328. https://doi.org/10.1016/j.energy.2018.08.212

11. Azarskov V. N., Strelnikov V. P. Nadezhnost sistem upravleniya i avtomatiki, Kiev, NAU, 2004, 164 p., available at: https://www.studmed.ru/azarskov-vn-strelnikov-vp-nadezhnost-sistem-upravleniya-i-avto matiki_881a18fe6fa.html (accessed: 06.03.2023) (In Russ.)

12. Khayrullin R. Z. Journal of Physics: Conference Series, 2021, vol. 1921, 012122. https://doi.org/10.1088/1742-6596/1921/1/012122

13. Abinandhitha R., Sakthivel R., Kong F. and Parivalla A. European Journal of Control, 2022, vol. 67, 100713. https://doi.org/10.1016/j.ejcon.2022.100713

14. Deyin Jiang,Tianyu Chen, Juanzhang Xie, Weimin Cui and Bifeng Song. Reliability Engineering & System Safety, 2023, vol. 230, 108922. https://doi.org/10.1016/j.ress.2022.108922

15. Xiaoli Yan, GuijiTang and Xialong Wang. Measurement, 2022, vol. 188, 110571. https://doi.org/10.1016/j.measurement.2021.110571

16. TaoYan, Yaguo Lei, Naipeng Li, Biao Wang and Wenting Wang. Reliability Engineering & System Safety, 2021, vol. 212, 107 638. https://doi.org/10.1016/j.ress.2021.107638

17. Guanqi Fang, Rong Pan and Yili Hong. Reliability Engineering & System Safety, 2020, vol. 193, 106618. https://doi.org/10.1016/j.ress.2019.106618

18. Elena E. Romero, Christophe Bérenguer, John J.Martinez. IFAC-PapersOnLine, 2022, vol. 55, iss. 19, pp. 13–18. https://doi.org/10.1016/j.ifacol.2022.09.177

19. Jantara V. L., Basoalto H., and Papaelias M. International Journal of Fatigue, 2020, vol. 137, 105671. https://doi.org/10.1016/j.ijfatigue.2020.105671

20. Komusanac I., Brindley G. Fraile, D. and Ramirez L. Wind energy in Europe – 2020 statistics and the outlook for 2021– 2025. Wind Europe, 2021, 37 p., available at: https://s1.eestatic. com/2021/02/24/actualidad/210224_windeurope_combined_ 2020_stats.pdf (accessed: 6 March 2023).

21. Lee J. and Zhao F. GWEC – global wind report 2021. Technical report. Global Wind Energy Council, available at: https:// gwec.net/global-wind-report-2021/ (accessed: 6 March 2023).

22. Merainani B., Laddada S., Bechhoefer E., Chikh M., Benazzouz D. Renewable Energy, 2022, vol. 182, pp. 1141–1151. https://doi.org/10.1016/j.renene.2021.10.062

23. Romero E. E., Martinez J. J., Berenguer C. Proc. 2021 5th International Conference on Control and Fault-Tolerant Systems (SysTol), IEEE Publ., 2021, рр. 335–340. https://doi.org/10.1109/SysTol52990.2021.9595837

24. Romero E. E., Martinez J. J., Berenguer C. Submitted to 11th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes – SAFE-PROCESS, IEEE, 2022. https://doi.org/10.1016/j.ifacol.2022.07.179

25. Tchakoua P., Wamkeue R., Ouhrouche M., Slaoui H., Tameghe T., Ekemb G. Energies, 2014, vol. 7, pp. 2595–2630. https://doi.org/10.3390/en7042595

26. Jarl K. Kampen. Measurement, 2019, vol. 137, pp. 428– 434. https://doi.org/10.1016/j.measurement.2019.01.083

27. Zhuang H. L., Chen H. B. Vibroengineering PROCEDIA, 2017, vol. 15, pp. 128–133. https://doi.org/10.21595/vp.2017.19358


Review

For citations:


Ershov D.S., Malakhov A.V., Talala A.V., Khairullin R.Z. Analysis of operation models of complex technical systems. Izmeritel`naya Tekhnika. 2023;(7):15-23. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-7-15-23

Views: 380


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)