Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

The study of texture features for the recognition problems of bone marrow cells in information-measuring systems of oncohematology

https://doi.org/10.32446/0368-1025it.2021-10-53-59

Abstract

The influence of the parameters of the construction of the spatial-dependence matrices on textural features in the tasks of recognizing bone marrow cells in information and measurement systems for the diagnosis of acute leukemia is studied. Bone marrow preparations were obtained from patients with B- and T-cell acute lymphoblastic leukemias. 100 images of blast cells of B- and T-types were involved. Five textural features are considered – energy, inertia moment, local uniformity, maximum probability, entropy. The features were calculated on the basis of the spatial dependence matrices. The type of the color components of the RGB color image model, the adjacency distance and the direction of adjacency were analyzed as variable parameters when constructing the specified matrices. For a given sample of images of blast cells of type T and B a range of adjacency distances from 1 to 11 pixels was revealed, in which the greatest change in the values of texture features is observed. For different types of signs the change ranged from 20 % to 1700 %. The maximum information content among the studied texture features was obtained for the G-component of a color image in the texture feature “local uniformity” (information content coefficient 0.48) with an adjacency distance equal to one pixel. For practical application, it is recommended to use four directions of adjacency when constructing spatial adjacency matrices. The obtained results are important for specialists working in the field of designing information and measurement systems of oncohematology (diagnostics of dangerous oncological diseases – acute leukemias).

About the Authors

V. G. Nikitaev
National Research Nuclear University MEPHI (Moscow Engineering Physics Institute)
Russian Federation

Valentin G. Nikitaev

Moscow



A. N. Pronichev
National Research Nuclear University MEPHI (Moscow Engineering Physics Institute)
Russian Federation

Alexander N. Pronichev

Moscow



N. N. Tupitsin
N. N. Blokhin National Medical Research Center of Oncology
Russian Federation

Nikolay N. Tupitsin

Moscow



A. D. Palladina
N. N. Blokhin National Medical Research Center of Oncology
Russian Federation

Aleksandra D. Palladina

Moscow



V. V. Dmitrieva
National Research Nuclear University MEPHI (Moscow Engineering Physics Institute)
Russian Federation

Valentina V. Dmitrieva

Moscow



A. V. Kozyreva
National Research Nuclear University MEPHI (Moscow Engineering Physics Institute)
Russian Federation

Alexandra V. Kozyreva

Moscow



M. S. Mayorov
National Research Nuclear University MEPHI (Moscow Engineering Physics Institute)
Russian Federation

Mihail S. Mayorov

Moscow



M. A. Solomatin
National Research Nuclear University MEPHI (Moscow Engineering Physics Institute)
Russian Federation

Mihail A. Solomatin

Moscow



E. A. Druzhinina
National Research Nuclear University MEPHI (Moscow Engineering Physics Institute)
Russian Federation

Ekaterina A. Druzhinina

Moscow



E. V. Polyakov
National Research Nuclear University MEPHI (Moscow Engineering Physics Institute)
Russian Federation

Evgeny V. Polyakov

Moscow



B. B. Batuev
National Research Nuclear University MEPHI (Moscow Engineering Physics Institute)
Russian Federation

Bulat B. Batuev

Moscow



References

1. Gematologiya: rukovodstvo dlia vrachey, ed. N. N. Mamaev, St. Petersburg, SpetsLit. Publ., 2019, 639 p. (In Russ.)

2. Samorodov A. V., Biomedical Engineering, 2019, vol. 52, no. 6, pp. 387–390. https://doi.org/10.1007/s10527-019-09853-9

3. Sahlol A. T., Kollmannsberger P., Ewees A. A., Scientifi c Reports, 2020, vol. 10, no. 1, pp. 1–11. https://doi.org/10.1038/s41598-020-59215-9

4. Kutlu H., Avci E., Ozyurt F., Medical hypotheses, 2020, vol. 135, 109472. https://doi.org/10.1016/j.mehy.2019.109472

5. Chernykh E. M., Mihelev V. M., Kompjuternaya sistema klassifi katsii leykocitov na izobrazheniyah kletok krovi, Nauchniy rezultat. Informatsionnie tehnologii, 2019, vol. 4, no. 3, pp. 38-47. (In Russ.)

6. Amin M., Kermani S., Talebi A., Oghli M., Recognition of acute lymphoblastic leukemia cells in microscopic images using k-means clustering and support vector machine classifi er, Journal of Medical Signals & Sensors, 2015, vol. 5, no. 1, pp. 49–58.

7. Nikitaev V. G., Measurement Techniques,2015, vol. 58, no. 2, pp. 214–218. https://doi.org/10.1007/s11018-015-0688-0

8. Pratt W., Digital image processing: book 2, Hoboken, Wiley, 1982, 480 p.

9. Panteleev V. G., Slaev V. A., Chunovkina A. G., Measurement Techniques, 2008, vol. 51, no. 1, pp. 107–112. https://doi.org/10.1007/s11018-008-0019-9

10. Haralick R. M., Proceedings of the IEEE, 1979, vol. 67, no. 5, pp. 786–804. https://doi.org/10.1109/PROC.1979.11328

11. Dmitriyeva V. V., Tupitsyn N. N., Polyakov Ye. V., Samsonova A. D., Issledovaniye eff ektivnosti klassifi katsii izobrazheniy kletok kostnogo mozga v komp’yuternykh sistemakh diagnostiki ostrykh leykozov i minimal’noy ostatochnoy bolezni, Modelirovaniye, optimizatsiya i informatsionnyye tekhnologii, 2020, vol. 8, no. 3, pp. 1–9. (In Russ.)

12. Nikitaev V. G., Tupitsyn N. N., Pronichev A. N., Serebryakova I. N., Palladina A. D., Biomedical Engineering, 2021, vol. 54, no. 5, pp. 354–356. https://doi.org/10.1007/s10527-021-10038-6

13. Nikitaev V. G., Pronichev A. N., Polyakov E. V., Chernysheva O. A., Serebryakova I. N., Tupitsyn N. N., Procedia Computer Science, 2020, vol. 169, pp. 353–358. https://doi.org/10.1016/j.procs.2020.02.229

14.

15.


Review

For citations:


Nikitaev V.G., Pronichev A.N., Tupitsin N.N., Palladina A.D., Dmitrieva V.V., Kozyreva A.V., Mayorov M.S., Solomatin M.A., Druzhinina E.A., Polyakov E.V., Batuev B.B. The study of texture features for the recognition problems of bone marrow cells in information-measuring systems of oncohematology. Izmeritel`naya Tekhnika. 2021;(10):53-59. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-10-53-59

Views: 164


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)