

The uncertainty budget of the rubidium fountain: the preliminary results
https://doi.org/10.32446/0368-1025it.2021-10-28-33
Abstract
The structure, principle of operation and metrological performance of rubidium fountain developed at VNIIFTRI are presented. The preliminary uncertainty budget of this standard is the main goal of this research. The physical effects that cause the largest shifts of the measured frequency: quadratic Zeeman effect, blackbody radiation effect, gravitational redshift, cavity pulling effect are considered. Its frequency stability is and evaluated frequency uncertainty is less than 2·10–16. Those performances are at the level of the best rubidium fountain standards developed across the world. Those results are relevant for the time and frequency metrology and for timescales.
About the Authors
D. S. KupalovRussian Federation
Dmitry S. Kupalov
Mendeleevo, Moscow region
V. N. Baryshev
Russian Federation
Viacheslav N. Baryshev
Mendeleevo, Moscow region
I. Y. Blinov
Russian Federation
Igor Yu. Blinov
Moscow
A. I. Boiko
Russian Federation
Alexander I. Boiko
Mendeleevo, Moscow region
Y. S. Domnin
Russian Federation
Yuri S. Domnin
Mendeleevo, Moscow region
E. V. Ivanchenko
Russian Federation
Ekaterina V. Ivanchenko
Mendeleevo, Moscow region
References
1. Blinov I. Yu., Boiko A. I., Domnin Yu. S., Kostromin V. P., Kupalova O. V., Kupalov D. S., Measurement Techniques, 2017, vol. 60, no. 1, pp. 30–36. https://doi.org/10.1007/s11018-017-1145-z
2. Recommendation Adopted by the International Committee for Weights and Measures, Session I of the 102nd meeting of the CIPM, 2013, available at: https://www.bipm.org/documents/ 20126/34443817/CIPM2013-EN.pdf/e2c25a47-64c0-b348-966c253494015fb7 (accessed: 20.09.2021)
3. Pavlenko K. Yu., Pavlenko Yu. K., Belyaev A.A., Blinov I. Yu., Khromov M. N., Bize S., Lorini L., Quantum Electronics, 2018, vol. 48, no.10, pp. 967–972. http://dx.doi.org/10.1070/QEL16778
4. Kupalov D. S., Baryshev V. N., Blinov I. Yu., Boyko A. I., Domnin Yu. S., Kopylov L. N., Kupalova O. V., Novoselov A. V., Khromov M. N., Al’manakh sovremennoi metrologii, 2018, no. 15, pp. 31–41. (In Russ.)
5. Breit G., Rabi I. I., Phys. Rev., 1931, no. 38, pp. 2082– 2083. https://doi.org/10.1103/PhysRev.38.2082.2
6. Arimondo E., Inguscio M. and Violino P., Review of Modern Physics, 1977, no. 49, pp. 31–75. http://dx.doi.org/10.1103/RevModPhys.49.31
7. Pal’chikov V. G., Domnin Yu. S. and Novoselov A. V., J. Opt. B: Quantum and Semiclass, 2003, no. 5, pp. 131–135. https://doi.org/10.1088/1464-4266/5/2/370
8. Angstmann E. J., Dzuba V. A. and Flambaum V. V., Phys. Rev. A, 2006, vol. 74, no. 2, 023405. https://doi.org/10.1103/PhysRevA.74.023405
9. Safronova M., Jiand D., Safronova U., Phys. Rev., 2010, A82, 022510. https://doi.org/10.1103/PhysRevA.82.022510
10. Riehle F., Frequency Standards, WILEY-VCH Verlag GmbH & Co. KGaA, 2004, 526 p.
11. Ovchinnikov Y., Marra G., Metrologia, 2011, no. 48, pp. 87– 100. https://doi.org/10.1088/0026-1394/48/3/003
Review
For citations:
Kupalov D.S., Baryshev V.N., Blinov I.Y., Boiko A.I., Domnin Y.S., Ivanchenko E.V. The uncertainty budget of the rubidium fountain: the preliminary results. Izmeritel`naya Tekhnika. 2021;(10):28-33. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-10-28-33