Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

The measurement method of the polarization-entangled states of biphotons using a quantum tomograph

https://doi.org/10.32446/0368-1025it.2021-10-21-27

Abstract

A statistical analysis of errors in tomographic measurements of polarization-entangled biphoton states generated by sources based on the effect of spontaneous parametric down-conversion is carried out. The level of quantum fluctuations in the coincidence scheme, which is an unavoidable source of error in tomographic measurements, is analyzed in detail. A quantum tomograph was used to measure the density matrix of the quantum polarization state of biphotons in the Bell polarization state. The errors caused by quantum fluctuations are compared with the instrumental errors. It is shown that there are no obstacles to creating a tomographic metrological stand intended for characterizing SPDC-sources generating polarization-entangled biphotons.

About the Authors

D. N. Frolovtsev
Lomonosov Moscow State University
Russian Federation

Dmitry N. Frolovtsev

Moscow



S. A. Magnitskiy
Lomonosov Moscow State University
Russian Federation

Sergey A. Magnitskiy

Moscow



A. V. Demin
3 All Russia Research Institute of Optophysical Measurements
Russian Federation

Andrey V. Demin

Moscow



References

1. Kok P. et al., Reviews of Modern Physics, 2007, vol. 79, no. 1, р. 135. https://doi.org/10.1103/RevModPhys.79.135

2. Gisin N., Thew R., Nature Photonics, 2007, vol. 1, no. 3, р. 165. https://doi.org/10.1038/nphoton.2007.22

3. Kwiat P. G., Mattle K., Weinfurter H., Zeilinger A. et al., Physical Review Letters, 2005, vol. 75, р. 4337. https://doi.org/10.1103/PhysRevLett.75.4337

4. O’Brien J. L., Furusawa A., Vučković E., Nature Photonics, 2009, vol. 3, no. 12, р. 687. https://doi.org/10.1038/nphoton.2009.229

5. Magnitskii S. A., Frolovtsev D. N., Agapov D. P. et al., Measurement Techniques, 2017, vol. 60, no. 3, pp. 235–241. 10.1007/s11018-017-1179-2

6. Sussman B. et al., Quantum Science and Technology, 2019, vol. 4, no. 2, 020503. https://doi.org/10.1088/2058-9565/ab029d

7. Riedel M. et al., Quantum Science and Technology, 2019, vol. 4, no. 2, 020501. https://doi.org/10.1088/2058-9565/ab042d

8. Monroe C., Raymer M. G., Taylor J., Science, 2019, vol. 364, no. 6439, рр. 440–442. https://doi.org/10.1126/science.aax0578

9. Yamamoto Y., Sasaki M., Takesue H., Quantum Science and Technology, 2019, vol. 4, no. 2, 020502. https://doi.org/10.1088/2058-9565/ab0077

10. Raymer M. G., Monroe C., Quantum Science and Technology, 2019, vol. 4, no. 2, 020504. https://doi.org/10.1088/2058-9565/ab0441

11. Klyshko D. N., Photons nonlinear optics, CRC Press, 1988, 438 р.

12. Klyshko D. N., Coherent photon decay in a nonlinear medium, JETP Letters, 1967, vol. 6, iss. 1, pp. 23–25.

13. Kwiat P. G., et al., Physical Review A, 1999, vol. 60, no. 2, R773. https://doi.org/10.1103/PhysRevA.60.R773

14. Magnitskiy S., Frolovtsev D., Firsov V. et al., Journal of Russian Laser Research, 2015, vol. 36, no. 6, рр. 618–629. https://doi.org/10.1007/s10946-015-9540-x

15. Frolovtsev D. N., Magnitskiy S. A., Physics of Wave Phenomena, 2017, vol. 25, no. 3, рр. 180–184. https://doi.org/10.3103/S1541308X17030049

16. Frolovtsev D. N., Magnitskiy S. A., Demin A. V., Measurement Techniques, 2020, vol. 63, no. 4, pp. 273–280. https://doi.org/10.1007/s11018-020-01783-3

17. Gostev P. P., Agapov D. P., Demin A. V. et al., Measurement Techniques, 2019, vol. 61, no. 12, pp. 1166–1173. https://doi.org/10.1007/s11018-019-01565-6

18. James D. F. V et al., Physical Review A, 2001, vol. 64, no. 5, 052312. https://doi.org/10.1103/PhysRevA.64.052312

19. Gostev P. P., Magnitskiy S. A., Chirkin A.S., The inverse problem of photocount statistics, Moscow, MGU Publ., 2020. (In Russ.)

20. Abate J. A., Kimble H. J., Mandel L., Physical Review A, 1976, vol. 14, no. 2, р. 788. https://doi.org/10.1103/PhysRevA.14.788

21. Jozsa R., Journal of Modern Optics, 1994, vol. 41, no. 12, рр. 2315–2323. https://doi.org/10.1080/09500349414552171


Review

For citations:


Frolovtsev D.N., Magnitskiy S.A., Demin A.V. The measurement method of the polarization-entangled states of biphotons using a quantum tomograph. Izmeritel`naya Tekhnika. 2021;(10):21-27. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-10-21-27

Views: 203


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)