

The State primary standard of the unit of length – metre GET 2-2021
https://doi.org/10.32446/0368-1025it.2021-10-3-7
Abstract
The main stages of modernization of the State primary standard of the unit of length are described. The structure of the standard, new laser sources and units are described. The results of research of metrological characteristics of lasers at wavelengths of 633 and 532 nm are presented. The research were carried out by the He–Ne/ආ2 stabilized laser, the unit for measuring the frequency difference of laser radiation sources and the complex of equipment for measurement of laser frequency (wavelength in vacuum) in the wavelength range from 500 to 1050 nm (comb generator). As a result of the research, the main sources of the components of residual systematic error and standard uncertainty (type B), standard deviation and standard uncertainty (type A). The comparative analysis of the metrological characteristics of GET 2-2010 and GET 2-2021 are also given. Thus, it became possible to realize the unit of length at the wavelength of 633 nm with standard deviation of 1,6·10–12 and at the wavelength of 532 nm with standard deviation of 1,3·10–12, and the range of transferring of the unit of length to laser radiation sources and other modern high-precision measuring systems has been expanded. The State primary standard of the unit of length GET 2-2021 has been successfully tested and approved by the order of Rosstandart.
About the Authors
T. P. AkimovaRussian Federation
Tatiana P. Akimova
St. Petersburg
Y. G. Zackharenko
Russian Federation
Yuri G. Zackharenko
St. Petersburg
N. A. Kononova
Russian Federation
Natalia A. Kononova
St. Petersburg
V. L. Fedorin
Russian Federation
Victor L. Fedorin
St. Petersburg
Z. V. Fomkina
Russian Federation
Zoya V. Fomkina
St. Petersburg
K. V. Chekirda
Russian Federation
Konstantin V. Chekirda
St. Petersburg
References
1. Recommended values of standard frequencies for the metre, available at: https://www.bipm.org/en/publications/mises-en-pratique/standard-frequencies-metre (accessed: 15.10.2021).
2. Alexandrov V. S., Zakharenko Yu. G., Kononova N. A., Leibengardt G. I., Fedorin V. L., Chekirda K. V., Measurement Techniques, 2012, vol. 55, no. 6, pp. 595–602. https://doi.org/10.1007/s11018-012-0007-y
3. Kononova N. A., Zackharenko Yu. G., Fedorin V. L., Fomkina Z. V., Investigations of metrological characteristics of the “Winters Electro-Optics, Inc.” iodine-stabilized He-Ne laser by The State Primary Standard of the Unit of Length – GET 2-2010, 18th International Conference on Laser Optics ICLO 2018, St. Petersburg, p. 56.
4. Denisov V. I., Ignatovich S. M., Kvashnin N., Skvortsov M. N., Quantum Electronics, 2016, vol. 46, no. 5, pp 464–467. http://dx.doi.org/10.1070/QEL16015
5. Skvortsov M. N., Okhapkin M. N., Nevskii A. Yu., Bagayev S. N., Quantum Electronics, 2004, vol. 34(12), pp. 1101–1106. http://dx.doi.org/10.1070/QE2004v034n12ABEH002851
6. Peter Jungner, Mark L. Eickhoff , Steve D. Swartz, Jun Ye, John L. Hall, Steave В. Waltman, Proc. SPIE 2378, Laser Frequency Stabilization and Noise Reduction, 1995, vol. 2378, pp. 22–34. https://doi.org/10.1117/12.208229
7. Holzwarth R., Nevsky A. Yu., Zimmermann M., Udem Th., Hansch T. W., Von Zanthier J., Walther H., Knight J. C., Wadsworth W. J., Russell P. St. J., Skvortsov M. N., Bagayev S. N., Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer, Applied Physics B-Lasers and Optics, 2001, vol. 73(3), pp. 269–271.
8. Ignatovich S. M., Kvashnin N., Skvortsov M. N., Quantum Electronics, 2018, vol. 48(10), pp. 973–976. http://dx.doi.org/10.1070/QEL16609
9. Zakharenko Yu. G., Kononova N. A., Fomkina Z. V., Chekirda K. V., Lukin A. Ya., Development of application program for a complex of high-precision hardware instruments for reproduction and transmission of the unit of length, Instruments, 2018, no. 12(222), pp. 42–47. (In Russ.)
10. Hall J. L., Defi nition and measurement of optical frequencies: perspectives of optical clocks – and not only, Phys. Usp., 2006, vol. 176, no. 12, pp. 1353–1367. (In Russ.) https://doi.org/10.3367/UFNr.0176.200612i.1353
11. Hensh T. V., Passion for accuracy, Phys. Usp., 2006, vol. 176, no. 12, pp. 1368–1380. (In Russ.) https://doi.org/10.3367/UFNr.0176.200612j.1368
12. Tsatourian V., Femtosecond combs for optical frequency metrology, 2013, available at: https://www.ros.hw.ac.uk/bitstream/handle/10399/ 2747/TsatourianV_0314_eps.pdf?sequence=1 (accessed: 15.03.2021).
13. Sizmann A., Fischer M., Holzwarth R., Calibration System based on a Laser Frequency Comb. Interim Report to ESO, Version 0.1, Menlo Systems GmbH, 2006, available at: http://www.eso.org/~lpasquin/permarco/InterimReportCalibrationSystemV0.120.6.06.pdf (accessed: 15.03.2021).
14. Ye J., Schnatz H., Hollberg L. W., IEEE Journal of Selected Topics in Quantum Electronics, 2003, vol. 9, no. 4, pp. 1041–1058. https://doi.org/10.1109/JSTQE.2003.819109
15. Zakharenko Yu. G., Kononova N. A., Fedorin V. L., Fomkina Z. V., Chekirda K. V., Measurement Techniques, 2020, vol. 63, no. 2, pp. 77–80. https://doi.org/10.1007/s11018-020-01753-9
Review
For citations:
Akimova T.P., Zackharenko Y.G., Kononova N.A., Fedorin V.L., Fomkina Z.V., Chekirda K.V. The State primary standard of the unit of length – metre GET 2-2021. Izmeritel`naya Tekhnika. 2021;(10):3-7. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-10-3-7