

Model for estimating the heterogeneity of the distribution of globule characteristics in images of skin neoplasms
https://doi.org/10.32446/0368-1025it.2021-9-62-67
Abstract
The problem of skin melanoma diagnostics from digital images of the tumor is considered. Clinical algorithms for detecting skin melanoma are briefly described. An overview of the works devoted to the automated assessment of the asymmetry of the distribution of shape, color, area of globules – important signs of melanoma – is given. A model for estimating the heterogeneity of the distribution of the characteristics of globules on digital images in the skin neoplasms diagnosis is developed and models of signs of heterogeneity of this distribution are proposed. The comparative evaluation of the proposed models was carried out experimentally using a software system developed in C++. The most informative features are identified. The greatest accuracy 93 % in estimating the heterogeneity of the distribution of the characteristics of globules was shown by the sign “the reduced inverse of the greatest frequency of occurrence of the measured areas of globules”. The results obtained can be applied in the development of systems to support medical decision-making in the diagnosis of melanoma.
About the Authors
V. G. NikitaevRussian Federation
Valentin G. Nikitaev
Moscow
A. N. Pronichev
Russian Federation
Alexandr N. Pronichev
Moscow
O. B. Tamrazova
Russian Federation
Olga B. Tamrazova
Moscow
V. Y. Sergeev
Russian Federation
Vasily Yu. Sergeev
Moscow
V. Y. Selchuk
Russian Federation
Vladimir Yu. Selchuk
Moscow
V. S. Kozlov
Russian Federation
Vladimir S. Kozlov
Moscow
A. O. Lim
Russian Federation
Alina O. Lim
Moscow
References
1. Kaprin A. D., Starinskij V. V., Petrova G. V., Zlokachestvennye novoobrazovaniya v Rossii v 2018 godu (zabolevaemost’ i smertnost’), Moscow, MNIOI im. P. A. Gercena – fi lial FGBU “NMIC radiologii” Minzdrava Rossii Publ., 2019, 250 p. (In Russ.)
2. Menzies S. W., Moloney F. J., Byth K. et al., JAMA dermatology, 2013, vol. 149, no. 6, pp. 699–709. https://doi.org/10.1001/jamadermatol.2013.2466
3. Argenziano G., Soyer P., Chimenti S. et al., Journal of the American Academy of Dermatology, 2003, vol. 48, no. 5, pp. 679– 693. https://doi.org/10.1067/mjd.2003.281
4. Argenziano G., Catricalà C., Ardigo M. et al, British Journal of Dermatology, 2011, vol. 164, no. 4, pp. 785–790. https://doi.org/10.1111/j.1365-2133.2010.10194.x
5. Malishevskaya N. P., Sokolova A. V., Toropova N. P., Rekomendatsii po provedeniyu dermatoskopii novoobrazovanii kozhi, protokol dermatoskopicheskogo issledovaniya, Training manual for doctors, Ekaterinburg, SV-96 Publ., 2018, 23 p. (In Russ.)
6. Tschandl P., Rosendahl C., Kittler H., Journal of the European Academy of Dermatology and Venereology, 2015, vol. 29, no. 1, pp. 120–127. https://doi.org/10.1111/jdv.12483
7. Zhuchkov M. V., Tarasova M. A., Sonin D. B., Nodulyarnye melanomy kozhi. Dermatoskopicheskaya diagnostika, Vestnik dermatologii i venerologii, 2016, no. 6, pp. 27–33. (In Russ.)
8. Korovin S. I., Litus A. I., Litvinenko B. V., Kukushkina M. N., Palivets F. Yu., Dermatoskopiya melanomy kozhi: prikladnoe znachenie i perspektivy, Klinicheskaya onkologiya, 2012, no. 4, pp. 28–32. (In Russ.)
9. Zhuchkov M. V., Bolshakova E. E., Sonin D. B., Zhiltsova E. E., Shilin R. R., Isakova M. S., Rodionova S. A., Dermatologiya. Prilozhenie k zhurnalu Consilium Medicum, 2019, no. 1, pp. 39–42. (In Russ.) https://doi.org/10.26442/24143537.2019.1.190203
10. Xu J., Gupta K., Stoecker W. V. et al., Archives of dermatology, 2009, vol. 145, no. 11, pp. 1245–1251. https://doi.org/10.1001/archdermatol.2009.285
11. Kawahara J., Daneshvar S., Argenziano G., Hamarneh G., IEEE journal of biomedical and health informatics, 2018, vol. 23, no. 2, pp. 538–546. https://doi.org/10.1109/JBHI.2018.2824327
12. Nasir M., Khan M. A., Sharif M., Javed M. Y., Saba T., Ali H., Tariq J., Current Medical Imaging, 2020, vol. 16, no. 7, pp. 794–822. https://doi.org/10.2174/1573405615666191223122401
13. Jiménez A., Serrano C., Acha B., 14th International Conference Image Analysis and Recognition, ICIAR 2017, Montreal, QC, Canada, July 5–7, 2017, Springer, 2017, pp. 486–493. https://doi.org/10.1007/978-3-319-59876-5_54
14. Nikitaev V. G., Measurement Techniques, 2015, vol. 58, no. 6, pp. 719–723. https://doi.org/10.1007/s11018-015-0781-4.
15. Nikitaev V. G., Measurement Techniques, 2015, vol. 58, no. 2, pp. 214–218. https://doi.org/10.1007/s11018-015-0688-0.
16. Nikitaev V. G., Measurement Techniques, 2015, vol. 58, no. 4, pp. 68–70. https://doi.org/10.1007/s11018-015-0736-9.
17. Jaworek-Korjakowska J., Tadeusiewicz R., 2013 IEEE International Conference on Image Processing, IEEE, 15–18 September 2013, Melbourne, Australia, 2013, pp. 1456–1460. https://doi.org/10.1109/ICIP.2013.6738299
18. Fabbrocini G., Cacciapuoti S., Salvatores G. De Fata et al., AIMS Bioengineering, 2020, vol. 7, no. 4, pp. 306–320. https://doi.org/10.3934/bioeng.2020025
19. Yoshino S., Tanaka T., Tanaka M., Oka H., Application of morphology for detection of dots in tumor, SICE 2004 Annual Conference, IEEE, 4–6 August 2004, Sapporo, Japan, 2004, vol. 1, pp. 591–594.
20. Chatterjee S., Dey D., Munshi S., Studies on a formidable dot and globule related feature extraction technique for detection of melanoma from dermoscopic images, Proceedings of the computer, communication and electrical technology, 2017, pp. 337–341
Review
For citations:
Nikitaev V.G., Pronichev A.N., Tamrazova O.B., Sergeev V.Y., Selchuk V.Y., Kozlov V.S., Lim A.O. Model for estimating the heterogeneity of the distribution of globule characteristics in images of skin neoplasms. Izmeritel`naya Tekhnika. 2021;(9):62-67. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-9-62-67