Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Model for estimating the heterogeneity of the distribution of globule characteristics in images of skin neoplasms

https://doi.org/10.32446/0368-1025it.2021-9-62-67

Abstract

The problem of skin melanoma diagnostics from digital images of the tumor is considered. Clinical algorithms for detecting skin melanoma are briefly described. An overview of the works devoted to the automated assessment of the asymmetry of the distribution of shape, color, area of globules – important signs of melanoma – is given. A model for estimating the heterogeneity of the distribution of the characteristics of globules on digital images in the skin neoplasms diagnosis is developed and models of signs of heterogeneity of this distribution are proposed. The comparative evaluation of the proposed models was carried out experimentally using a software system developed in C++. The most informative features are identified. The greatest accuracy 93 % in estimating the heterogeneity of the distribution of the characteristics of globules was shown by the sign “the reduced inverse of the greatest frequency of occurrence of the measured areas of globules”. The results obtained can be applied in the development of systems to support medical decision-making in the diagnosis of melanoma.

About the Authors

V. G. Nikitaev
National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute)
Russian Federation

Valentin G. Nikitaev

 Moscow



A. N. Pronichev
National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute)
Russian Federation

Alexandr N. Pronichev

Moscow



O. B. Tamrazova
Russian Peoples' Friendship University
Russian Federation

Olga B. Tamrazova

Moscow



V. Y. Sergeev
Central State Medical Academy of the Administrative Department of the President of the Russian Federation
Russian Federation

Vasily Yu. Sergeev

Moscow



V. Y. Selchuk
National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute); A. I. Yevdokimov Moscow State University of Medicine and Dentistry
Russian Federation

Vladimir Yu. Selchuk

Moscow



V. S. Kozlov
National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute)
Russian Federation

Vladimir S. Kozlov

Moscow



A. O. Lim
National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute)
Russian Federation

Alina O. Lim

Moscow



References

1. Kaprin A. D., Starinskij V. V., Petrova G. V., Zlokachestvennye novoobrazovaniya v Rossii v 2018 godu (zabolevaemost’ i smertnost’), Moscow, MNIOI im. P. A. Gercena – fi lial FGBU “NMIC radiologii” Minzdrava Rossii Publ., 2019, 250 p. (In Russ.)

2. Menzies S. W., Moloney F. J., Byth K. et al., JAMA dermatology, 2013, vol. 149, no. 6, pp. 699–709. https://doi.org/10.1001/jamadermatol.2013.2466

3. Argenziano G., Soyer P., Chimenti S. et al., Journal of the American Academy of Dermatology, 2003, vol. 48, no. 5, pp. 679– 693. https://doi.org/10.1067/mjd.2003.281

4. Argenziano G., Catricalà C., Ardigo M. et al, British Journal of Dermatology, 2011, vol. 164, no. 4, pp. 785–790. https://doi.org/10.1111/j.1365-2133.2010.10194.x

5. Malishevskaya N. P., Sokolova A. V., Toropova N. P., Rekomendatsii po provedeniyu dermatoskopii novoobrazovanii kozhi, protokol dermatoskopicheskogo issledovaniya, Training manual for doctors, Ekaterinburg, SV-96 Publ., 2018, 23 p. (In Russ.)

6. Tschandl P., Rosendahl C., Kittler H., Journal of the European Academy of Dermatology and Venereology, 2015, vol. 29, no. 1, pp. 120–127. https://doi.org/10.1111/jdv.12483

7. Zhuchkov M. V., Tarasova M. A., Sonin D. B., Nodulyarnye melanomy kozhi. Dermatoskopicheskaya diagnostika, Vestnik dermatologii i venerologii, 2016, no. 6, pp. 27–33. (In Russ.)

8. Korovin S. I., Litus A. I., Litvinenko B. V., Kukushkina M. N., Palivets F. Yu., Dermatoskopiya melanomy kozhi: prikladnoe znachenie i perspektivy, Klinicheskaya onkologiya, 2012, no. 4, pp. 28–32. (In Russ.)

9. Zhuchkov M. V., Bolshakova E. E., Sonin D. B., Zhiltsova E. E., Shilin R. R., Isakova M. S., Rodionova S. A., Dermatologiya. Prilozhenie k zhurnalu Consilium Medicum, 2019, no. 1, pp. 39–42. (In Russ.) https://doi.org/10.26442/24143537.2019.1.190203

10. Xu J., Gupta K., Stoecker W. V. et al., Archives of dermatology, 2009, vol. 145, no. 11, pp. 1245–1251. https://doi.org/10.1001/archdermatol.2009.285

11. Kawahara J., Daneshvar S., Argenziano G., Hamarneh G., IEEE journal of biomedical and health informatics, 2018, vol. 23, no. 2, pp. 538–546. https://doi.org/10.1109/JBHI.2018.2824327

12. Nasir M., Khan M. A., Sharif M., Javed M. Y., Saba T., Ali H., Tariq J., Current Medical Imaging, 2020, vol. 16, no. 7, pp. 794–822. https://doi.org/10.2174/1573405615666191223122401

13. Jiménez A., Serrano C., Acha B., 14th International Conference Image Analysis and Recognition, ICIAR 2017, Montreal, QC, Canada, July 5–7, 2017, Springer, 2017, pp. 486–493. https://doi.org/10.1007/978-3-319-59876-5_54

14. Nikitaev V. G., Measurement Techniques, 2015, vol. 58, no. 6, pp. 719–723. https://doi.org/10.1007/s11018-015-0781-4.

15. Nikitaev V. G., Measurement Techniques, 2015, vol. 58, no. 2, pp. 214–218. https://doi.org/10.1007/s11018-015-0688-0.

16. Nikitaev V. G., Measurement Techniques, 2015, vol. 58, no. 4, pp. 68–70. https://doi.org/10.1007/s11018-015-0736-9.

17. Jaworek-Korjakowska J., Tadeusiewicz R., 2013 IEEE International Conference on Image Processing, IEEE, 15–18 September 2013, Melbourne, Australia, 2013, pp. 1456–1460. https://doi.org/10.1109/ICIP.2013.6738299

18. Fabbrocini G., Cacciapuoti S., Salvatores G. De Fata et al., AIMS Bioengineering, 2020, vol. 7, no. 4, pp. 306–320. https://doi.org/10.3934/bioeng.2020025

19. Yoshino S., Tanaka T., Tanaka M., Oka H., Application of morphology for detection of dots in tumor, SICE 2004 Annual Conference, IEEE, 4–6 August 2004, Sapporo, Japan, 2004, vol. 1, pp. 591–594.

20. Chatterjee S., Dey D., Munshi S., Studies on a formidable dot and globule related feature extraction technique for detection of melanoma from dermoscopic images, Proceedings of the computer, communication and electrical technology, 2017, pp. 337–341


Review

For citations:


Nikitaev V.G., Pronichev A.N., Tamrazova O.B., Sergeev V.Y., Selchuk V.Y., Kozlov V.S., Lim A.O. Model for estimating the heterogeneity of the distribution of globule characteristics in images of skin neoplasms. Izmeritel`naya Tekhnika. 2021;(9):62-67. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-9-62-67

Views: 99


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)