

Multifrequency optimization method of measurement the frequency dependency of electrophysical parameters of dielectric and magnetodielectric coatings
https://doi.org/10.32446/0368-1025it.2020-9-54-61
Abstract
The issues of experimental determination of electrodynamic parameters of existing and new synthesized materials and coatings used in the microwave range are highlighted. Problems arising from measurements of the electrophysical and geometric parameters of dielectric and magnetodielectric coatings, taking into account their placement on a metal substrate, by radio wave methods are considered. We present the new radio wave method of joint measurements of the frequency dependence of the complex permittivity, the frequency dependence of the complex magnetic permeability, and the thickness of plane-layered samples of dielectric and magnetodielectric coatings on a metal substrate. Determination of electrophysical and geometric parameters of the coating in the proposed method is reduced to minimizing the objective function constructed based on the discrepancy between the experimental and design theoretical values of the attenuation coefficients of surface electromagnetic wave fields on a grid of discrete frequencies. The simulation model of measurements is shown, implemented on the basis of the electrodynamic modeling system CST Microwave studio (Simulia corporation, USA) and the Matlab system. The results of simulation are presented to determine the frequency dependences of the electrophysical parameters and the thickness of a sample of a radio-absorbing coating on a metal substrate. Errors in the estimates of permittivity and permeability in the measurement frequency band 9–13.5 GHz, which are no more than 10 % with a confidence level of 0.95 with a mean square deviation of the noise level of 0.006, have been obtained. The proposed method can be in demand in various science-intensive areas – microelectronic, aerospace, mechanical engineering, etc.
About the Author
A. I. Kaz'minRussian Federation
Aleksandr I. Kaz'min
Voronezh
References
1. Dankov P. I., J. Phys., Conf. Ser., 2020, vol. 1598, 012002. https://doi.org/10.1088/1742-6596/1598/1/012002
2. Lagar’kov A. N., Pogosjan M. A., Fundamental’nye i prikladnye problemy stels-tekhnologii [Fundamental and applied problems of stealth technologies], Vestnik RAN, 2003, vol. 73, no. 9, pp. 779–787. (In Russ.)
3. Sukharevskii O. I., Vasilets V. A., Kukobko S. V., Nechitailo S. V., Sazonov A. Z., Rasseyanie elektromagnitnykh voln vozdushnymi i nazemnymi radiolokatsionnymi ob”ektami [Scattering of electromagnetic waves by air and ground radar objects], Xar’kov, KhUPS, 2009, 468 p. (In Russ.)
4. Belyaev V. V., Kir’yanov O. E., Pon’kin V. A., Radiolokatsionnye, antennye i radiofi zicheskie izmereniya [Radar, antenna and radiophysical measurements], Voronezh, Nauchnaya kniga publ., 2013, 319 p. (In Russ.)
5. Baskov K. M., Politiko A. A., Semenenko V. N., Chistyaev V. A., Akimov D. I. and Krasnolobov I. I., Zhurnal radioelektroniki, 2019, no. 11. (In Russ.) https://doi.org/10.30898/1684-1719.2019.11.12
6. Semenenko V. N., Chistyaev V. A., Politiko A. A., Baskov K. M., Measurement Techniques, 2019, vol. 62, no. 2, pp. 161–166. https://doi.org/10.1007/s11018-019-01601-5
7. Li Zh., Haigh A., Soutis C., Gibson A., Sloan R., Journal of Nondestructive Evaluation, 2019, vol. 37, 39. https://doi.org/10.1007/s10921-018-0493-1
8. Antropov O. S., Drobakhin O. O., Povyshenie razreshayushchei sposobnosti metoda fur’e-preobrazovaniya koeffi tsienta otrazheniya putem ekstrapolyatsii spektra na osnove printsipa minimuma dlitel’nosti [Increasing the resolution of the Fourier transform of the refl ection coeffi cient by extrapolating the spectrum based on the principle of minimum duration] Defektoskopiya, 2009, no. 5, pp. 72–80. (In Russ.)
9. Kaz’min A. I., Fedjunin P. A., Measurement Techniques, 2020, vol. 63, no. 8, pp. 645–652. https://doi.org/10.1007/s11018-020-01834-9
10. Kaz’min A. I., Fedjunin P. A., Russian Journal of Nondestructive Testing, 2021, vol. 57, no. 4, pp. 320–336. https://doi.org/10.1134/S1061830921040070
11. Vaganov R. B., Korshunov I. P., Korshunova E. N., Oleinikov A. D., Radiotekhnika i elektronika, 2013, vol. 58, no. 2, pp. 136– 142. (In Russ.)
12. Valerio G., Jackson D. R., Galli A., Proceedings of the Royal Society, 2010, vol. 466, pp. 2447–2469. https://doi.org/10.1098/rspa.2009.0664
13. Felsen L. B., Marcuvitz N., Radiation and Scattering of Waves, vol. 1, Englewood Cliff s, New Jersey, 1973.
14. Frezza F., Tedeschi N., Journal of the Optical Society of America A, 2015, vol. 32, no. 8, pp. 1485–1501. https://doi.org/10.1364/JOSAA.32.001485
15. Brekhovskikh L. M., Volny v sloistykhsredakh [Waves in layered media], Moscow, Nauka Publ., 1973, 343 p. (In Russ.)
16. Ufi mtsev P. Ya., Ling R. T., IEEE Transactions on Antennas and Propagation, 2001, vol. 49, iss. 10, pp. 1445–1452. https://doi.org/10.1109/8.954933
Review
For citations:
Kaz'min A.I. Multifrequency optimization method of measurement the frequency dependency of electrophysical parameters of dielectric and magnetodielectric coatings. Izmeritel`naya Tekhnika. 2021;(9):54-61. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-9-54-61