

Technique and results of experimental determination of the compressibility factor of the natural gas
https://doi.org/10.32446/0368-1025it.2021-9-35-40
Abstract
The actual problem of the possibility of using the equations of state for the gas phase of natural gas at temperatures below 250 K is considered. To solve it, the compressibility coefficients of natural gas obtained experimentally with high accuracy are required. The technique was developed and experimental study was carried out of compressibility factor aiming expanding temperature range of the state equations GERG-2004 and AGA8-DC92. The proposed technique is based on the fact that to assess the applicability of the equation of state, it is sufficient to obtain the relative value of the compressibility coefficient and not to determine its absolute value. The technique does not require complex equipment and provides high accuracy. The technique was tested on nitrogen, argon, air and methane. Uncertainty of determination of the compressibility factor is not greater than 0.1 %. For two different compositions of natural gas, obtained experimental data were demonstrated that the equations of state GERG-2004 and AGA8-92DC provide uncertainty of the calculation of the compressibility coefficient within 0.1 % in the temperature range from 220 K to 250 K and pressure below 5 Mpa.
About the Authors
D. Y. KutovoyRussian Federation
Denis Y. Kutovoy
St.-Petersburg
I. A. Yatsenko
Russian Federation
Igor A. Yatsenko
Kazan
V. B. Yavkin
Russian Federation
Vladimir B. Yavkin
Kazan
A. N. Mukhametov
Russian Federation
Aydar N. Mukhametov
Kazan
P. V. Lovtsov
Russian Federation
Petr V. Lovtsov
St.-Petersburg
R. I. Ganiev
Russian Federation
Rais I. Ganiev
Kazan
References
1. TM-15 / The GERG-2004 Wide-range equation of state for natural gases and other mixtures, edited by O. Kunz, R. Klimeck, and W. Wagner, 2007, available at: http://www.gerg.eu/wp-content/uploads/2019/10/TM15.pdf(accessed:22.01.2021).
2. Kunz O., Wagner W., J. Chem. Eng. Data, 2012, vol. 57, pp. 3032–3091. https://pubs.acs.org/doi/10.1021/je300655b
3. TM-4 / The GERG databank of high accuracy compressibility factor measurements, edited by M. Jaeschke and A. E. Humphreys, 1991, available at: http://www.gerg.eu/wp-content/uploads/2019/10/TM4.pdf(accessed:22.01.2021).
4. TM-7 / Supplement to the GERG databank of high-accuracy compression factor measurements, edited by M. Jaeschke, H. M. Hinze and A. E. Humphreys, 1997, available at: http://www.gerg.eu/wpcontent/uploads/2019/10/TM7.pdf(accessed:22.01.2021).
5. Cyclis D. S., Technique of physicochemical research at high and ultrahigh pressures, edition 4th, Moscow, Chimiya Publ., 1976, 423 p. (In Russ.)
6. Hwang C.-A., Simon P. P., Hou H., Hall K. R., Holste J. C., Marsh K. N., J. Chem. Thermodynamics, 1997, vol. 29, рр. 1455– 1472. https://doi.org/10.1006/jcht.1997.0258
7. Sytchev V. V., Vasserman A. A., Kozlov A. D., Spiridonov G. A., Tsimarny B. A., Thermodynamic properties of nitrogen, Moscow, Izdatelstvo standartov Publ., 1977, 352 p. (In Russ.)
8. Vargaftic N. B., Handbook on thermophysical properties of gases and liquids, Moscow, Phismathgis Publ., 1972, 721 p. (In Russ.)
9. Sytchev V. V., Vasserman A. A., Zagoroutchenko V. A., Kozlov A. D., Spiridonov G. A., Tsimarny B. A., Thermodynamic properties of methane, GSSSD, Monograph series, Moscow, Izdatelstvo standartov Publ., 1979, 348 p. (In Russ.)
10. Sytchev V. V., Vasserman A. A., Kozlov A. D., Spiridonov G. A., Tsimarny B. A., Thermodynamic properties of air, GSSSD, Monograph series, Moscow, Izdatelstvo standartov Publ., 1979, 276 p. (In Russ.)
11. Magee J. W., Haynes W. M., Hiza M. J., J. Chem. Thermodynamics, 1997, vol. 29, рр. 1439–1454. https://doi.org/10.1006/jcht.1997.0259
12.
Review
For citations:
Kutovoy D.Y., Yatsenko I.A., Yavkin V.B., Mukhametov A.N., Lovtsov P.V., Ganiev R.I. Technique and results of experimental determination of the compressibility factor of the natural gas. Izmeritel`naya Tekhnika. 2021;(9):35-40. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-9-35-40