

Indirect estimation of state variables of industrial reaction-regeneration systems based on computer simulation
https://doi.org/10.32446/0368-1025it.2021-8-41-50
Abstract
A reaction-regeneration system is described, which is a hardware part of industrial production and is characterized by an exceptional feature – pronounced nonlinearity in the form of a plurality of stationary solutions of model differential equations. This feature forces one to resort to engineering solutions that are alternative to direct measurements. The problem of indirect estimation of the components of the state vector of the reaction-regeneration system is considered. The incorrectness of the indirect assessment of the state of such objects on the basis of the theory of Kalman filters is shown. The incorrectness is due to the ambiguity of the mapping of the state space into the space of vectors tangent to the trajectories. An approach based on synchronous simulation in dynamics is proposed, which consists in comparing two evolutions “object – model” with minimization of the mismatch. A technique based on the inclusion of the second derivatives of the state variables into the mismatch function is presented. The methodology of the sensitivity of indirect estimation systems based on maximizing the similarity of the compared evolutions “object – model” in the regime of strict synchronization with respect to external disturbances and control levers is considered. It is shown that the accuracy of the indirect estimation of physically unmeasurable coordinates is largely determined by the mathematical aspects of minimizing the mismatch function, which, due to the multiplicity of solutions to model equations, has a complex structure of the response surface.
About the Authors
H. A. NagiyevAzerbaijan
Hasan A. Nagiyev
Baku
N. A. Guliyeva
Azerbaijan
Nyubar A.Guliyeva
Sumgait
References
1. Elnashaie S. S., El-Hennawi I. M., Chem. Eng. Sci., 1979, vol. 34, no. 9, pp.1113–1118.
2. Wgialla R. M., Helal A. M., Elnasaie S. S., Math. and Comput. Model., 1991, vol. 15, no. 1, pp. 17–22.
3. Burovoi I. A., Mamedov A. A., Constructing Model Structure for Identifi cation of Certain Class of Heterogeneous Catalytic Processes, Automation and Remote Control, 1970, vol. 31, no. 7, pp. 100–105. (In Russ.)
4. Beskov V. S., Nagiev A. G., Yusifov R. Yu., Optimizaciya HTS s uchetom mnozhestvennosti i ustojchivosti stacionarnyh sostoyanij, Abstracts of the National conference reports “Metody kibernetiki himiko-tekhnologicheskih processov”, Moscow, CNIITENEFTEKHIM Publ., 1984, pp. 106–107. (In Russ.)
5. Nagiev A. G., Theoretical Foundations of Chemical Engineering, 2000, vol. 34, no. 3, pp. 274–280. https://doi.org/10.1007/BF02755975
6. Xilei Wang, Ning Li, Shaoyuan Li, 36th Chinese Control Conference (CCC), Dalian, 2017, pp. 4034–4039. https://doi.org/10.23919/ChiCC.2017.8027989
7. Krylov V. A., Hodyashev N. B., Podvintsev I. B., Bolotova E. S., Chirkova N. A., Infl uence of character of coking depositions on indexes of work platinum-perrhenic reforming catalyst, Neftepererabotka i neftekhimiya, 2013, no. 5, рр. 14–18. (In Russ.)
8. Nagiev A. G., Khalilov S. A., Agaev U. K., Guseinova A. S., Automation and Remote Control, 2015, vol. 76 (12), рр. 2233– 2240. https://doi.org/10.1134/S0005117915120127
9. Mouzinho L. F., Fonseca Neto J. V. et al., Practical aspects for design of indirect measurement in dynamic systems, Proceeding XVIII IMEKO World Congress, Metrology for a Sustainable Development, September, 17–22, 2006, Rio de Janeiro, Brazil, pp. 46–52.
10. Jonas Linder and Martin Enqvist, International Journal of Control, 2017, vol. 90, no.4, pp. 729–745. https://doi.org/10.1080/00207179.2016.1222557
11. Liya Huang, Zhong Wu, Kan Wang, Sensors, 2018, vol. 18 (6), p. 1873. https://doi.org/10.3390/s18061873
12. Gauthier T., Bayle J., Leroy P., FCC: Fluidization Phenomena and Technologies, Oil & Gas Science and Technology – Rev. IFP, 2000, vol. 55, no. 2, pp. 187–207.
13. Karl Brammer, Gerhard Siffl ing, Kalman-Bucy-fi lter, Norwood, MA, Artech House, 1989, 391 p.
14. Nagiev A. G., Nagiev G. A., Gulieva N. A., Theoretical Foundations of Chemical Engi neering, 2019, vol. 53 (1), pp. 29–42. https://doi.org/10.1134/S0040579519010111
15. Jay C. Hsu, Andrew U. Meyer, Modern control principles and applications, New York, McGraw-Hill, 1968.
16. Miroshnik I. V., Teoriya avtomaticheskogo upravleniya. Linejnye sistemy, S. Petersburg, Piter Publ., 2005, 335 p. (In Russ.)
17. Polyak B. T., Khlebnikov M. V., Rapoport L. B., Matematicheskaya teoriya avtomaticheskogo upravleniya, Moscow, URSS Publ., 2019, 500 p. (In Russ.)
18. Zhukov V. K., Teoriya pogreshnostej tekhnicheskih izmerenij, Tomsk, To mskij politekhnicheskij universitet Publ., 2007, 180 p. (In Russ.)
19. Zemelman M. A., Metrologicheskie osnovy tekhnicheskih izmerenij, Moscow, Izdatelstvo standartov Publ., 1991, 288 p. (In Russ.)
20. Panfi lov V. A., Elektr icheskie izmereniya, Moscow, Akademiya Publ., 20 13, 288 p. (In Russ.)
21. Fichtenholz G. M., Osnovy matematicheskogo analiza, in 2 volums, vol. 1, Moscow, Nauka Publ., 1964, 440 p. (In Russ.)
22. Mironov E. G., Bessonov N. P., Metrologiya i tekhnicheskie izmereniya, Moscow, Knorus Publ., 2015, 422 p. (In Russ.)
23. Fedorenko R. P., Vvedenie v vychislitel’nuyu fi ziku, Moscow, Izdatelstvo MFTI Publ., 1994, 528 p. (In Russ.)
Review
For citations:
Nagiyev H.A., Guliyeva N.A. Indirect estimation of state variables of industrial reaction-regeneration systems based on computer simulation. Izmeritel`naya Tekhnika. 2021;(8):41-50. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-8-41-50