Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Realization of new definition of kelvin on National primary state standard of temperature in the temperature range from 0.3 K to 273.16 K GET 35-2021

https://doi.org/10.32446/0368-1025it.2021-8-8-15

Abstract

Description and metrological characteristics are presented of upgraded in 2021 equipment of National primary state standard of temperature on the temperature range from 0.3 K to 273.16 K GET 35-2021. GET 35-2021 allow to to the reproduce and disseminate the unit of temperature according to its definition accepted on 26th CGPM in 2018. Three installations of acoustic gas thermometry developed in 2012–2019 have been introduced in the National primary state standard covering ranges 79–273.16 K, 4.2–80 K, 268.16–273.16 K. The equipment for reproduction of fixed points of of International Temperature scale ITS-90 has been upgraded for uncertainty reduction. Uncertainty of reproduction of thermodynamic temperature and temperature according to ITS-90 have been calculated on the basis of investigations of upgraded equipment.

About the Authors

V. G. Kytin
Russian metrological institute of technical physics and radio engineering (VNIIFTRI); M.V. Lomonosov Moscow State University
Russian Federation

Vladimir G. Kytin

Mendeleevo, Moscow region

Moscow



M. Y. Ghavalyan
Russian metrological institute of technical physics and radio engineering (VNIIFTRI)
Russian Federation

Mamikon Yu. Ghavalyan

Mendeleevo, Moscow region



A. A. Petukhov
Russian metrological institute of technical physics and radio engineering (VNIIFTRI)
Russian Federation

Aleksey A. Petukhov

Mendeleevo, Moscow region



B. G. Potapov
Russian metrological institute of technical physics and radio engineering (VNIIFTRI)
Russian Federation

Boris G. Potapov

Mendeleevo, Moscow region



Y. E. Razhba
Russian metrological institute of technical physics and radio engineering (VNIIFTRI)
Russian Federation

Yakov E. Razhba

Mendeleevo, Moscow region



E. G. Aslanyan
Russian metrological institute of technical physics and radio engineering (VNIIFTRI)
Russian Federation

Edward G. Aslanyan

Mendeleevo, Moscow region



A. N. Schipunov
Russian metrological institute of technical physics and radio engineering (VNIIFTRI)
Russian Federation

Andrey N. Schipunov

Mendeleevo, Moscow region



References

1. Steur P. P. M., Durieux M., Metrologia, 1986, vol. 23, pp. 1–18. https://doi.org/10.1088/0026-1394/23/1/002

2. Schooley J. F., NBS/NIST Gas thermometry from 0 to 660 °C, J. Res. Natl. Inst. Stand. Technol., 1990, vol. 95, pp. 255–290.

3. Preston-Thomas H., Kirby C. G. M., Gas thermometer determinations of the thermodynamic temperature scale in the range –183 °C to 100 °C, Metrologia, 1968, vol. 4, pp. 30–40.

4. Astrov D. N., Beliansky L. B., Dedikov Y. A., Polunin S. P., Zakharov A. A., Metrologia, 1989, vol. 26, pp. 151–166. https://doi.org/10.1088/0026-1394/26/3/001

5. Rusby R., Head D., Meyer C., Tew W., Tamura O., Hill K. D., De Groot M., Storm A., Peruzzi A., Fellmuth B., Engert J., Astrov D., Dedikov Yu., Kytin G., Metrologia, 2006, vol. 43, 03002. https://doi.org/10.1088/0026-1394/43/1A/03002

6. Benedetto G, Gavioso R. M., Spagnolo R., Marcarino P., Merlone A., Metrologia, 2004, vol. 41, pp. 74–98. https://doi.org/10.1088/0026-1394/41/1/011

7. Pitre L., Moldover M. R., Tew W. L., Metrologia, 2006, vol. 43, pp. 142–162. https://doi.org/10.1088/0026-1394/43/1/020

8. Moldover M. R., Gavioso R. M., Mehl J. B., Pitre L., D e Podesta M., Zhang J. T., Metrologia, 2014, vol. 51, R1. https://doi.org/10.1088/0026-1394/51/1/R1

9. Pitre L., Metrologia, 2015, vol. 52, pp. S263–S273. https://doi.org/10.1088/0026-1394/52/5/S263

10. Gavioso R. M., Metrologia, 2015, vol. 52, pp. S274–S304. https://doi.org/10.1088/0026-1394/52/5/S274

11. Podesta M., Underwood R., Sutton G., Morantz P., Harris P., Mark D. F., Stuart F. M., Vargha G., Machin G., Metrologia, 2013, vol. 50, pp. 354–376. https://doi.org/10.1088/0026-1394/50/4/354

12. Gavioso R. M., Ripa D. M., Steur P. P. M., Dematteis R., Imbraguglio D., Metrologia, 2019, vol. 56, p. 045006. https://doi.org/10.1088/1681-7575/ab29a2

13. Kytin V. G., Kytin G. A., Ghavalyan M. Yu., Potapov B. G., Aslanyan E. G., Schipunov A. N., International Journal of Thermophysics, 2020, vol. 41 (6), p. 88. https://doi.org/10.1007/s10765-020-02663-2

14. Osadchii S. M., Potapov B. G., Pilipenko K. D., Acoustic gas thermometer for realization of new defi nition of kelvin on the basis of fundamental physical Boltzmann constant, Al’manac of Modern Metrology, 2012, vol. 12, pp. 15–39. (In Russ.)

15. Osadchii S. M., Potapov B. G., Pilipenko K. D., Aslanyan E. G., Shchipunov A. N., Measurement Techniques, 2017, vol. 60, no. 7, pp. 656–665. https://doi.org/10.1007/s11018-017-1251-y

16. Kytin V. G., Gavalyan M. Yu., Potapov B. G., Aslanyan E. G., Shchipunov A. N., Measurement Techniques, 2020, vol. 63, no. 1, pp. 45–52. https://doi.org/10.1007/s11018-020-01748-6

17. Osadchii S. M., Potapov B. G., Petukhov A. A., Pilipenko K. D., Razhba Ya. E., Realization of the triple point of oxygen for capsule type thermometers, Al’manac of Modern Metrology, 2020, vol. 1 (21), pp. 136–147. (In Russ.)


Review

For citations:


Kytin V.G., Ghavalyan M.Y., Petukhov A.A., Potapov B.G., Razhba Y.E., Aslanyan E.G., Schipunov A.N. Realization of new definition of kelvin on National primary state standard of temperature in the temperature range from 0.3 K to 273.16 K GET 35-2021. Izmeritel`naya Tekhnika. 2021;(8):8-16. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-8-8-15

Views: 285


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)