

Modern trends in the design of modules of national standards for units of volume fluid flow rate (volume) in the range from 10–5–103 ml/min
https://doi.org/10.32446/0368-1025it.2021-7-32-41
Abstract
In the context of the needs of the leading sectors of the world economy, the current state of metrological support for measuring units of mass and volume of a liquid in a flow, mass and volume flow rates of a liquid in the range of micro-flow rates of 10–5–103 ml/min is considered. Based on the results of the analytical review, the main metrological and operating characteristics of national standards are presented. The basic principles of generating a fluid flow in national gravimetric and volumetric standards when measuring the mass and volume of a fluid by the dynamic weighing method have been determined. Constructive solutions and principles of operation of key modules of national standards are considered. Methods for filling a liquid into a storage tank and designs of storage tanks are determined, taking into account the minimization of the effect of liquid evaporation, the influence of capillary force and buoyancy. The main sources of uncertainty in measuring the mass and volume of a liquid by the dynamic weighing method and methods for minimizing these uncertainties are considered. A modified model of dynamic measurement of liquid mass flow rate is proposed, taking into account the main sources of uncertainty. A comparative assessment of the influence of sources of uncertainty on the metrological characteristics of national standards is presented.
About the Authors
R. R. TukhvatullinRussian Federation
Rustam Rashidovich Tukhvatullin
Kazan, Republic of Tatarstan
A. V. Shchelchkov
Russian Federation
Alexey Valentinovich Shchelchkov
Kazan, Republic of Tatarstan
References
1. Lucas P., Ahrens M., Geršl J., Sparreboom W., Lötters J., Biomedizinische Technik, 2015, vol. 60, pp. 317–335. https://doi.org/10.1515/bmt-2014-0132
2. Corleto C., Claudel P., Dobre M., Del Campo D., Filtz J.-R., Measurement Science and Technology, 2018, vol. 29, no. 7, pp. 070101. https://doi.org/10.1088/1361-6501/aabb6d
3. David C., Claudel P., MAPAN Journal of Metrology Society of India, 2011, vol. 26, pp. 203–209. https://doi.org/10.1007/s12647-011-0019-0
4. Kremlevskii P. P., Raskhodomery i schetchiki kolichestva veshchestv: Spravochnik: Kn. 2 [Flowmeters and counters of the amount of substances: Handbook: Book. 2], ed. E. A. Shornikov, St. Peterburg, Politechnica Publ., 2004, 412 p. (In Russ.)
5. Lötters J. C., Lammerink T. S., Groenesteijn J., Haneveld J., Wiegerink R. J., Micromachines, 2012, vol. 3, pp. 194–203. https://doi.org/10.3390/mi3010194
6. Tukhvatullin R. R., Shchelchkov A. V., Fafurin V. A., Measurement Techniques, 2021, no. 2, pp. 3–8. https://doi.org/10.32446/0368-1025it.2021-2-3-8
7. Bissig H., Tschannen M., de Huu M., Flow Measurement and Instrumentation, 2020, vol. 73, 101744. https://doi.org/10.1016/j.flowmeasinst.2020.101744
8. Benkova M., Mikulecky I., Primary standard and traceability chain for microfl ow of liquids, 16th International Flow Measurement Conference, FLOMEKO 2013, Paris, France, September 24–26, 2013, Paris, IMEKO, 2013, pp. 44–49.
9. Benkova M., Schweitzer F., New primary standard with piston prover for microfl ow of liquids, 18th International Flow Measurement Conference, FLOMEKO 2019, Lisbon, Portugal, June 26–28, 2019, Lisbon, IMEKO, 2019, pp. 463–467.
10. Melvad C., Frederiksen J., The progress of gravimetric primary standards for liquid fl ow calibration at the Danish technological institute from 500 m3/h to 10–9 m3/h, 16th International Flow Measurement Conference, FLOMEKO 2013, Paris, France, September 24–26, 2013, Paris, IMEKO, 2013, pp. 218–221.
11. Salipante P., Hudson S. D., Schmidt J. W., Wright J. D., Experiments in Fluids, 2017, vol. 58, no. 7, pp. 85. https://doi.org/10.1007/s00348-017-2362-6
12. Wright J. D., Schmidt J. W., Reproducibility of liquid micro-fl ow measurements, 18th International Flow Measurement Conference, FLOMEKO 2019, Lisbon, Portugal, June 26–28, 2019, Lisbon, IMEKO, 2019, pp. 604–622.
13. Batista E., Godinho I., Martins R.F., Mendes R., Robarts J., Flow Measurement and Instrumentation, 2020, vol. 75, p. 101789. https://doi.org/10.1016/j.flowmeasinst.2020.101789
14. Sirenden B.H., Zaid G., Prajitno P., Hafi d Development of volumetric micro-fl ow calibration system using FPGA for medical application, XXI IMEKO World Congress “Measurement in Research and Industry”, Prague, Czech Republic, 30 August – 4 September 2015, Prague, IMEKO, 2015, pp. 116100.
15. Chinarak T., Yooyartmak K., Wongthep P., Journal of Physics: Conference Series, 2018, vol. 1144, no. 1, 012081. https://doi.org/10.1088/1742-6596/1144/1/012081
16. Doihara R., Shimada T., Cheong K.-H., Terao Y., Flow Measurement and Instrumentation, 2016, vol. 50, pp. 90-101. https://doi.org/10.1016/j.flowmeasinst.2016.06.014
17. Bissig H., Petter H. T., Lucas P., Batista E., Filipe E., Almeida N., Ribeiro L. F., Gala J., Martins R. F., Savanier B., Ogheard F., Niemann A. K., Lötters J., Sparreboom W., Biomed EngBiomed Tech., 2015, vol. 60, pp. 301–316. https://doi.org/10.1515/bmt-2014-0145
18. Platenkamp T. H., Sparreboom W., Ratering G. H. J. M., Katerberg M. R., Lötters J., Micromachines, vol. 6, no. 4, 2015, pp. 473–486. https://doi.org/10.3390/mi6040473
19.
20.
Review
For citations:
Tukhvatullin R.R., Shchelchkov A.V. Modern trends in the design of modules of national standards for units of volume fluid flow rate (volume) in the range from 10–5–103 ml/min. Izmeritel`naya Tekhnika. 2021;(7):32-41. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-7-32-41