

A model for the selection of structural elements of lines in digital images in oncodermatology
https://doi.org/10.32446/0368-1025it.2021-6-66-71
Abstract
The problem of early diagnosis of one of the most dangerous malignant neoplasms of the skin – melanoma is considered. A model for identifying the structural elements of lines in digital images of skin neoplasms in oncodermatology has been developed. The model is based on adaptive binarization of the original digital dermatoscopic image of skin neoplasms and subsequent operations of dilation, erosion, skeletonization and filtering of false fragments of lines. Test dermatoscopic images of skin neoplasms are visually divided into four groups to conduct the experiment. The optimal parameters of image processing of four groups for the model of selection of structural elements – lines – are experimentally established. The experimentally determined accuracy of the selection of lines was 95 %. The work is the result of interdisciplinary cooperation between dermatologists of the Central Medical Academy of the Presidential Administration of the Russian Federation, the Medical Institute of the Peoples' Friendship University of Russia and specialists in the field of information and measurement systems of the Engineering and Physical Institute of Biomedicine of the National Research Nuclear University “MEPhI”. The proposed model can be used in the development of computer systems to support medical decision – making in the diagnosis of skin melanoma – a dangerous malignant neoplasm.
About the Authors
V. G. NikitaevRussian Federation
Valentin G. Nikitaev
Moscow
A. N. Pronichev
Russian Federation
Alexandr N. Pronichev
Moscow
O. B. Tamrazova
Russian Federation
Olga B. Tamrazova
Moscow
V. Y. Sergeev
Russian Federation
Vasily Yu. Sergeev
Moscow
A. I. Otchenashenko
Russian Federation
Alexandr I. Otchenashenko
Moscow
E. A. Druzhinina
Russian Federation
Ekaterina A. Druzhinina
Moscow
A. V. Kozyreva
Russian Federation
Alexandra V. Kozyreva
Moscow
M. A. Solomatin
Russian Federation
Mihail A. Solomatin
Moscow
V. S. Kozlov
Russian Federation
Vladimir S. Kozlov
Moscow
References
1. Ebert M. A., Gafton G. I., Zinovev G. V., Gafton I. G., Problem in oncology, 2019, vol. 65, no. 5, pp. 638–644.
2. Zhuchkov M. V., Sharova N. M., Bol’shakova E. E., Sonin D. B., Consilium Medicum, 2020, vol. 22, no. 7, pp. 38–41.
3. Kudrin K. G., Rimskaya E. N., Apollonova I. A., Nikolaev A. P., Chernomyrdin N., Svyatoslavov D. S., Davydov D. V., Reshetov I. V., Optics and Spectroscopy, 2020, vol. 128, no. 6, pp. 820–831. https://doi.org/10.1134/S0030400X20060132
4. Kulik S., Shtanko A., Procedia Computer Science, 2020, vol. 169, pp. 164–167. https://doi.org/10.1016/j.procs.2020.02.129
5. Prilipsky R. E., Zaeva M. A., Procedia Computer Science, 2020, vol. 169, pp. 96–99. https://doi.org/10.1016/j.procs.2020.02.120.19
6. Marchetti M. A., Liopyris K., Dusza S. W., Codella N. C., Gutman D. A., Helba B., Kalloo A., Halpern A. C., Soyer H. P., CurielLewandrowski C., Caff ery L., Malvehy J., Journal of the American Academy of Dermatology, 2020, vol. 82, no. 3, pp. 622–627. https://doi.org/10.1016/j.jaad.2019.07.016
7. Amelard R., Glaister J., Wong A., Clausi D. A., IEEE Transactions on Biomedical Engineering, 2014, vol. 62, no. 3, pp. 820– 831. https://doi.org/10.1109/TBME.2014.2365518
8. Oliveira R. B., Papa J. P., Pereira A. S., Tavares J., Neural Comput. & Applic., 2018, vol. 29, no. 3, pp. 613–636. https://doi.org/10.1007/s00521-016-2482-6
9. Munir K., Elahi H., Ayub A., Frezza F., Rizzi A., Cancers, 2019, vol. 11, no. 9, p. 1235. https://doi.org/10.3390/cancers11091235
10. Masood A., Ali Al-Jumaily A., International journal of biomedical imaging, 2013, vol. 2013. https://doi.org/10.1155/2013/323268
11. Inskip M., Cameron A., Akay B. N., Gorji M., Clark S. P., Rosendahl N., Coetzer-Botha M., Kittler H., Rosendahl C., JDDG: Journal der Deutschen Dermatologischen Gesellschaft, 2020, vol. 18, no. 9, pp. 969–976. https://doi.org/10.1111/ddg.14220
12. Kittler H., Rosendahl C., Cameron A., Tschandl P., Dermatoscopy. An algorithmic method based on pattern analysis, Facultas Publishing AG, 2018.
13. Zhuchkov M.V., Bulinska A.K., Kittler H., Dermatoscopy (Suppl. Consilium Medicum), 2017, no. 2, pp. 5–13. (In Russ.)
14. Kudrina M. A., Izvestia of the Samara Scientifi c Center of the Russian Academy of Sciences, 2014, vol. 16, no. 4 (2), pp. 476– 478. (In Russ.)
15. Zotin A. G., Borisov Yu. V., Lisitsa A. S., Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. аkademika M. F. Reshetneva, 2013, vol. 47, no. 1, pp. 24–30. (In Russ.)
16. Ilyasova N. Yu., Korepanov A. O., Chikulaev P. M., Computer optics, 2006, no. 29, pp. 146–150. (In Russ.)
17. Taouil K., Romdhane N. B., Proceedings of 2nd International Conference on Distributed Frameworks for Multimedia Applications, Penang, Malaysia, 15–17 May 2006, pp. 1–12. https://doi.org/10.1109/DFMA.2006.296918
18. Taouil K., Romdhane N. B., Bouhlel M. S., Proceedings of 2nd International Conference on Information & Communication Technologies, Damascus, Syria, 24–28 April 2006, vol. 1, pp. 212– 220. https://doi.org/10.1109/ICTTA.2006.1684373
19. Fischer S., Schmid P., Guillod J., Proceedings of 3rd IEEE International Conference on Image Processing, Lausanne, Switzerland, 19 Sept. 1996, vol. 1, pp. 323–326. https://doi.org/10.1109/ICIP.1996.559416
20. Fleming M. G., Steger C., Zhang J., Gao J., Cognetta A. B., Dyer C. R., Computerized medical imaging and graphics, 1998, vol. 22, no. 5, pp. 375–389.
21. Grana C., Cucchiara R., Pellacani G., Seidenari S., Proceedings of 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, 20–24 Aug., 2006, vol. 2, pp. 275– 278. https://doi.org/10.1109/ICPR.2006.764
22. Anantha M., Moss R. H., Stoecker W. V., Comput. Med. Imaging Graph., 2004, vol. 28, no. 5, pp. 225–234.
23. Sadeghi M., Razmara M., Ester M., Lee T. K., Atkins M. S., Medical Imaging 2010: Image Processing. International Society for Optics and Photonics, 2010, vol. 7623, pp. 762312.
24. Sadeghi M., Razmara M., Lee T. K., Atkins M. S., Comput. Med. Imaging Graph., 2011, vol. 35, no. 2, pp. 137–143.
25. Grishanov K. M., Belov Yu. S., Nauka, tehnika, obrazovanie, 2016, no. 2, pp. 90–95, available at: URL: https://nto-journal.ru/catalog/informacionnye-texnologii/177/ (accessed: 10.02.2021). (In Russ.)
26. Zhang T. Y., Suen C. Y., Communications of the ACM, 1984, vol. 27, no 3, pp. 236–239.tps://doi.org/10.37469/0507-3758-2019-65-5-638-644
27.
Review
For citations:
Nikitaev V.G., Pronichev A.N., Tamrazova O.B., Sergeev V.Y., Otchenashenko A.I., Druzhinina E.A., Kozyreva A.V., Solomatin M.A., Kozlov V.S. A model for the selection of structural elements of lines in digital images in oncodermatology. Izmeritel`naya Tekhnika. 2021;(6):66-71. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-6-66-71