Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

A model for the selection of structural elements of lines in digital images in oncodermatology

https://doi.org/10.32446/0368-1025it.2021-6-66-71

Abstract

The problem of early diagnosis of one of the most dangerous malignant neoplasms of the skin – melanoma is considered. A model for identifying the structural elements of lines in digital images of skin neoplasms in oncodermatology has been developed. The model is based on adaptive binarization of the original digital dermatoscopic image of skin neoplasms and subsequent operations of dilation, erosion, skeletonization and filtering of false fragments of lines. Test dermatoscopic images of skin neoplasms are visually divided into four groups to conduct the experiment. The optimal parameters of image processing of four groups for the model of selection of structural elements – lines – are experimentally established. The experimentally determined accuracy of the selection of lines was 95 %. The work is the result of interdisciplinary cooperation between dermatologists of the Central Medical Academy of the Presidential Administration of the Russian Federation, the Medical Institute of the Peoples' Friendship University of Russia and specialists in the field of information and measurement systems of the Engineering and Physical Institute of Biomedicine of the National Research Nuclear University “MEPhI”. The proposed model can be used in the development of computer systems to support medical decision – making in the diagnosis of skin melanoma – a dangerous malignant neoplasm.

About the Authors

V. G. Nikitaev
National Research Nuclear University “MEPhI”
Russian Federation

Valentin G. Nikitaev

Moscow



A. N. Pronichev
National Research Nuclear University “MEPhI”
Russian Federation

Alexandr N. Pronichev

Moscow



O. B. Tamrazova
Russian Peoples' Friendship University
Russian Federation

Olga B. Tamrazova

Moscow



V. Y. Sergeev
Central State Medical Academy of the Administrative Department of the President of the Russian Federation
Russian Federation

Vasily Yu. Sergeev

Moscow



A. I. Otchenashenko
National Research Nuclear University “MEPhI”
Russian Federation

Alexandr I. Otchenashenko

Moscow



E. A. Druzhinina
National Research Nuclear University “MEPhI”
Russian Federation

Ekaterina A. Druzhinina

Moscow



A. V. Kozyreva
National Research Nuclear University “MEPhI”
Russian Federation

Alexandra V. Kozyreva

Moscow



M. A. Solomatin
National Research Nuclear University “MEPhI”
Russian Federation

Mihail A. Solomatin

Moscow



V. S. Kozlov
National Research Nuclear University “MEPhI”
Russian Federation

Vladimir S. Kozlov

Moscow



References

1. Ebert M. A., Gafton G. I., Zinovev G. V., Gafton I. G., Problem in oncology, 2019, vol. 65, no. 5, pp. 638–644.

2. Zhuchkov M. V., Sharova N. M., Bol’shakova E. E., Sonin D. B., Consilium Medicum, 2020, vol. 22, no. 7, pp. 38–41.

3. Kudrin K. G., Rimskaya E. N., Apollonova I. A., Nikolaev A. P., Chernomyrdin N., Svyatoslavov D. S., Davydov D. V., Reshetov I. V., Optics and Spectroscopy, 2020, vol. 128, no. 6, pp. 820–831. https://doi.org/10.1134/S0030400X20060132

4. Kulik S., Shtanko A., Procedia Computer Science, 2020, vol. 169, pp. 164–167. https://doi.org/10.1016/j.procs.2020.02.129

5. Prilipsky R. E., Zaeva M. A., Procedia Computer Science, 2020, vol. 169, pp. 96–99. https://doi.org/10.1016/j.procs.2020.02.120.19

6. Marchetti M. A., Liopyris K., Dusza S. W., Codella N. C., Gutman D. A., Helba B., Kalloo A., Halpern A. C., Soyer H. P., CurielLewandrowski C., Caff ery L., Malvehy J., Journal of the American Academy of Dermatology, 2020, vol. 82, no. 3, pp. 622–627. https://doi.org/10.1016/j.jaad.2019.07.016

7. Amelard R., Glaister J., Wong A., Clausi D. A., IEEE Transactions on Biomedical Engineering, 2014, vol. 62, no. 3, pp. 820– 831. https://doi.org/10.1109/TBME.2014.2365518

8. Oliveira R. B., Papa J. P., Pereira A. S., Tavares J., Neural Comput. & Applic., 2018, vol. 29, no. 3, pp. 613–636. https://doi.org/10.1007/s00521-016-2482-6

9. Munir K., Elahi H., Ayub A., Frezza F., Rizzi A., Cancers, 2019, vol. 11, no. 9, p. 1235. https://doi.org/10.3390/cancers11091235

10. Masood A., Ali Al-Jumaily A., International journal of biomedical imaging, 2013, vol. 2013. https://doi.org/10.1155/2013/323268

11. Inskip M., Cameron A., Akay B. N., Gorji M., Clark S. P., Rosendahl N., Coetzer-Botha M., Kittler H., Rosendahl C., JDDG: Journal der Deutschen Dermatologischen Gesellschaft, 2020, vol. 18, no. 9, pp. 969–976. https://doi.org/10.1111/ddg.14220

12. Kittler H., Rosendahl C., Cameron A., Tschandl P., Dermatoscopy. An algorithmic method based on pattern analysis, Facultas Publishing AG, 2018.

13. Zhuchkov M.V., Bulinska A.K., Kittler H., Dermatoscopy (Suppl. Consilium Medicum), 2017, no. 2, pp. 5–13. (In Russ.)

14. Kudrina M. A., Izvestia of the Samara Scientifi c Center of the Russian Academy of Sciences, 2014, vol. 16, no. 4 (2), pp. 476– 478. (In Russ.)

15. Zotin A. G., Borisov Yu. V., Lisitsa A. S., Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. аkademika M. F. Reshetneva, 2013, vol. 47, no. 1, pp. 24–30. (In Russ.)

16. Ilyasova N. Yu., Korepanov A. O., Chikulaev P. M., Computer optics, 2006, no. 29, pp. 146–150. (In Russ.)

17. Taouil K., Romdhane N. B., Proceedings of 2nd International Conference on Distributed Frameworks for Multimedia Applications, Penang, Malaysia, 15–17 May 2006, pp. 1–12. https://doi.org/10.1109/DFMA.2006.296918

18. Taouil K., Romdhane N. B., Bouhlel M. S., Proceedings of 2nd International Conference on Information & Communication Technologies, Damascus, Syria, 24–28 April 2006, vol. 1, pp. 212– 220. https://doi.org/10.1109/ICTTA.2006.1684373

19. Fischer S., Schmid P., Guillod J., Proceedings of 3rd IEEE International Conference on Image Processing, Lausanne, Switzerland, 19 Sept. 1996, vol. 1, pp. 323–326. https://doi.org/10.1109/ICIP.1996.559416

20. Fleming M. G., Steger C., Zhang J., Gao J., Cognetta A. B., Dyer C. R., Computerized medical imaging and graphics, 1998, vol. 22, no. 5, pp. 375–389.

21. Grana C., Cucchiara R., Pellacani G., Seidenari S., Proceedings of 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, 20–24 Aug., 2006, vol. 2, pp. 275– 278. https://doi.org/10.1109/ICPR.2006.764

22. Anantha M., Moss R. H., Stoecker W. V., Comput. Med. Imaging Graph., 2004, vol. 28, no. 5, pp. 225–234.

23. Sadeghi M., Razmara M., Ester M., Lee T. K., Atkins M. S., Medical Imaging 2010: Image Processing. International Society for Optics and Photonics, 2010, vol. 7623, pp. 762312.

24. Sadeghi M., Razmara M., Lee T. K., Atkins M. S., Comput. Med. Imaging Graph., 2011, vol. 35, no. 2, pp. 137–143.

25. Grishanov K. M., Belov Yu. S., Nauka, tehnika, obrazovanie, 2016, no. 2, pp. 90–95, available at: URL: https://nto-journal.ru/catalog/informacionnye-texnologii/177/ (accessed: 10.02.2021). (In Russ.)

26. Zhang T. Y., Suen C. Y., Communications of the ACM, 1984, vol. 27, no 3, pp. 236–239.tps://doi.org/10.37469/0507-3758-2019-65-5-638-644

27.


Review

For citations:


Nikitaev V.G., Pronichev A.N., Tamrazova O.B., Sergeev V.Y., Otchenashenko A.I., Druzhinina E.A., Kozyreva A.V., Solomatin M.A., Kozlov V.S. A model for the selection of structural elements of lines in digital images in oncodermatology. Izmeritel`naya Tekhnika. 2021;(6):66-71. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-6-66-71

Views: 151


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)