

Methodical errors in measuring the specular reflection coefficient from a planar sample of material for two types of measuring facilities
https://doi.org/10.32446/0368-1025it.2021-6-44-50
Abstract
This paper is discussed two methods for measuring the bistatic scattering characteristics of flat samples of the material. The experimental studies and numerical simulations of the dependence of the specular reflection coefficient on the incident angle of wave on a flat material sample carried out in the bistatic scheme of the experiment (rotation of the receiving and transmitting antennas) and in the monostatic scheme using a dihedral corner reflector (rotation of the object). Measurements for the magnetodielectric flat sample were carried out in ITAE RAS on two test facilities with the corresponding scheme of the experiment. To identify the errors of the methods used, we carried out numerical simulations of the measurement of the specular reflection coefficient of the sample under test by the method of integral equations (method of moments) in the FEKO program in the formulation of two experimental schemes. The obtained results were compared with each other and with the results of analytical calculations of the specular reflection coefficient carried out using the Fresnel formulas when considering an infinite flat layer of material. These calculations make it possible to compare the methodical errors in measuring the reflection coefficient in the two considered experimental schemes. It was shown that the results of the measurements using the corner reflector give methodical errors (deviations from the analytical calculation) by 1–2 dB more than the measurements on the bistatic facility. The results of experiments and numerical simulations are in agreement with each other. The conclusions obtained in this work are applicable to any experimental facilities for the study of planar materials.
About the Authors
R. V. GilmutdinovRussian Federation
Ruslan V. Gilmutdinov
Dolgoprudny, Moscow Region
I. I. Krasnolobov
Russian Federation
Igor I. Krasnolobov
Moscow
N. L. Menshikh
Russian Federation
Nikolay L. Menshikh
Dolgoprudny, Moscow Region;
Moscow
S. A. Fedorov
Russian Federation
Sergey A. Fedorov
Moscow
References
1. Sudha Rani K., Krishna Chaitanya T., International Journal of Engineering and Technical Research, 2015, vol. 3, no. 7, pp. 84–93.
2. Álvarez H. F, Gómez M. E., Las-Heras F., IEEE Transactions on Instrumentation and Measurement, 2020, vol. 69, no. 4, pp. 1737–1744. https://doi.org/10.1109/TIM.2019.2913721
3. Knott E. F., Shaeff er J. F., Tuley M. T., Radar cross section, Boston, SciTech Publ., 1993, second edition, 477 p.
4. Eyraud C., Geff rin J.-M., Sabouroux P., Chaumet P. C., Tortel H., Giovannini H., Litman A., Radio Science, 2008, vol. 43, no. 4, p. RS4018. https://doi.org/10.1029/2008RS003836
5. Röding M., Sommerkorn G., Häfner S., Ihlow A., Jovanoska S., Thomä R. S., Proc. of the 47th European Microwave conf., Nuremberg, Germany, 10–12 Oct. 2017. https://doi.org/10.23919/EuMC.2017.8231083
6. Daout F., Schmitt F., 2014 IEEE Conference on Antenna Measurements & Applications (CAMA), Antibes Juan-les-Pins, France, 16–19 Nov. 2014. https://doi.org/10.1109/CAMA.2014.7003455
7. Umari M. H., Ghodgaonkar D. K., Varadan V. V., Varadan V. K., IEEE Transactions on Instrumentation and Measurement, 1991, vol. 40, no. 1, pp. 19–24. https://doi.org/10.1109/19.69942
8. Fedorov S. A., Gilmutdinov R. V., Menshikh N. L., 2020 7th All-Russian Microwave Conference (RMC), Moscow, Russia, 25– 27 Nov. 2020. https://doi.org/10.1109/RMC50626.2020.9312243
9. Varentsov Ye. L., Dudkin M. I., Illarionov I. A., Proc. XXIV
10. International Scientifi c and Technical Conference “Information Systems and Technologies” ICT-2018), Nizhny Novgorod, Russia, April 20, 2018, NGTU Publ., 2018, p. 27. (In Russ.)
11. Gavrilov A. A., Kir’yanov O. E., Martynov N. A., Zabaluev V. E., Baranov S. O., Dubrovin Yu. A., Measurement Techniques, 2012, vol. 55, no. 7, pp. 826–833. https://doi.org/10.1007/s11018-012-0046-4
12. Vedyushkin G. A., Chernyshov M. G., Measurements Techniques, 1991, vol. 34, no. 12, pp. 1245–1248. https://doi.org/10.1007/BF00982566
13. Hua Yan, Hong-Cheng Yin, Sheng Li, and Liang-Sheng Li, IEEE Transactions on Antennas and Propagation, 2019, vol. 67, no. 7. https://doi.org/10.1109/TAP.2019.2911268damentalsofMetrology.Moderncourse], St. Petersburg, NPO “Professional” Publ., 2008, 284 p. (In Russ.)
14. Balabukha N. P., Zubov A. S., Solosin V. S., Kompaktnyye poligony dlya izmereniya kharakteristik rasseyaniya [Compact polygons for measuring scatter characteristics], Moscow, Nauka Publ., 2007. (In Russ.)
15. Gilmutdinov R. V., Menshikh N. L., Fedorov S. A., Journal of Radio Electronics, 2020, no. 10. (In Russ.) https://doi.org/10.30898/1684-1719.2020.10.6
16. Fedorov S. A., Menshikh N. L., Solosin V. S., Proc. XI AllRussian Scientifi c and Technical Conference “Metrology in Radio Electronics”, Mendeleevo, Moscow region, June 19–21, 2018, Mendeleevo, VNIIFTRI, 2018.
17. Fedorov S. A., Menshikh N. L., Proc. 6th All-Russian Microwave Conference, Moscow, 27–29 November 2018, Moscow, 2018, Kotel’nikov Institute of Radio Engineering and Electronics of RAS, p. 109. (In Russ.)
18. Kobak V. O., Radiolokatsionnyye otrazhateli [Radar refl ectors], Moscow, Sovetskoye radio Publ., 1975, 212 p. (In Russ.)
19. Ivanova V. I., Kibets S. G., Krasnolobov I. I., Lagarkov A. N., Politiko A. A., Semenenko V. N., Chistyaev V. A., Journal Radio Electronics, 2016, no. 7, available at: http://jre.cplire.ru/jre/jul16/5/text.pdf (accessed: 11.05.2021).
20. Semenenko V. N., Chistyaev V. A., Politiko A. A., Baskov K. M., Measurements Techniques, 2019, vol. 62, no. 2, pp. 161–166. https://doi.org/10.1007/s11018-019-01601-5
21. Brekhovskikh L. M., Waves in layered media, Imprint, Academic Press, 1976, 520 p.
22. Jakobus U., Marchand R. G., Ludick D. J., IEEE Transactions on Electromagnetic Compatibility, 2014, vol. 56, no. 4. https://doi.org/10.1109/TEMC.2014.2299408
Review
For citations:
Gilmutdinov R.V., Krasnolobov I.I., Menshikh N.L., Fedorov S.A. Methodical errors in measuring the specular reflection coefficient from a planar sample of material for two types of measuring facilities. Izmeritel`naya Tekhnika. 2021;(6):44-50. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-6-44-50