

Methods of temperature measurement in microwave heating technologies
https://doi.org/10.32446/0368-1025it.2021-6-20-28
Abstract
In industrial technological processes associated with the heating of the processed material by microwave radiation, it is necessary to measure the temperatures of objects. Methods for measuring temperatures in the fields of technology using microwave heating systems are considered. The main possibilities, disadvantages and limitations of the used contact and non-contact (optical) measurement methods are determined. The requirements for temperature measurement systems under conditions of exposure to strong electromagnetic fields are listed. The possibilities of the spectral pyrometry method are especially noted.
About the Author
B. A. LapshinovRussian Federation
Boris A. Lapshinov
Moscow
References
1. Morozov O., Kargin A., Savenko G., Trbekh V., Vorobyev I., Industrial Application of Microwave Heating, Electronics: Science, Technology, Business, 2010, no. 3, pp. 2–6. (In Russ.)
2. Advances in induction and microwave heating of mineral and organic materials, ed. Stanislaw Grundas, 2010, In Tech Publ., 752 p. https://doi.org/10.5772/562
3. Magunov A. N., Lazernaja termometrija tverdyh tel [Laser thermometry of solids], Moscow, Fizmatlit Publ., 2001, 224 p. (In Russ.)
4. Arzhannikov A. V., Akhmetov T. D., Kalinin P. V., Stend dlja issledovanij po SVCh nagrevu i prevrashheniju veshhestv [Stand for research on microwave heating and transformation of substances], Novosibirsk, Budker Institute of Nuclear Physics, 2004, 19 p. (In Russ.)
5. Kappe C. O., Chemical Society Reviews, 2013, vol. 42, no. 12, pp. 4977–4990. https://doi.org/10.1039/c3cs00010a
6. Yongguang Luo, Tianqi Liao, Xia Yu, Jing Li, Libo Zhang and Yunhao Xi, Green Processing and Synthesis, 2020, vol. 9, no. 1, pp. 97–106. https://doi.org/10.1515/gps-2020-0011
7. Bradshaw S. M., van Wyk E. J., de Swardt J. B., Microwave heating principles and the application to the regeneration of granular activated carbon, The Journal of The South African Institute of Mining and Metallurgy, 1998, iss. July/August, pр. 201–210.
8. Omran M., Fabritius T., Heikkinen E.-P., Chen G., Royal Society open science, 2017, no. 4. https://doi.org/10.1098/rsos.170710
9. Wiedenmann O., Ramakrishnan R., Saal P., Kilic E., Siart U., Eibert T. F., Volk W., Advances in Radio Science, 2014, vol. 12, pp. 21–28. https://doi.org/10.5194/ars-12-21-2014
10. Longzhi Li, Xiaowei Jiang, Huigang Wang, Jianwei Wang, Zhanlong Song, Xiqiang Zhao, Chunyuan Ma, Journal of Analytical and Applied Pyrolysis, 2017, vol. 125, pp. 318–327. https://doi.org/10.1016/j.jaap.2017.03.009
11. Divin A. G., Ponomarev S. V., Metody i sredstva izmerenij, ispytanij i kontrolja, ch. 3. [Methods and means of measurement, testing and control. Part 3], Tambov State Technical University Publ., 2013, 116 p. (In Russ.)
12. Garcia-Banos B., Reinosa J., Penaranda-Foix F. L., Fernández J. F., Catala-Civera J. M., Scientifi c Reports, 2019, vol. 9, 10809. https://doi.org/10.1038/s41598-019-47296-0
13. Fiber Optic Smart Structures, ed. Etic Udd, Wiley-Interscience, 1995, 688 p.
14. Ramirez A., Hueso J., Mallada R., Santamaria J., Chemical Engineering Journal, 2017, vol. 316, рp. 50–60. https://doi.org/10.1016/j.cej.2017.01.077
15. Ramopoulos V., Link G., Soldatov S., Jelonnek J., International Journal of Microwave and Wireless Technologies, 2018, vol. 10, iss. 5–6, рp. 709–716. https://doi.org/10.1017/S1759078718000727
16. Ano T., Kishimoto F., Sasaki R., Tsubaki S., Maitani M. M., Suzukia E., Wada Y., Physical Chemistry Chemical Physics, 2016, vol. 18, рp. 13173–13179. https://doi.org/10.1039/c6cp02034h
17. Herskowits R., Livshits P., Stepanov S., Aktushev O., Ruschin S., Jerby E., Semiconductor Science and Technology, 2007, vol. 22, no. 8, pp. 863–869. https://doi.org/10.1088/0268-1242/22/8/006
18. Jerby E., Dikhtyar V., Aktushev O., Grosglick U., Science, 2002, vol. 298, iss. 5593, pp. 587–589. https://doi.org/10.1126/science.1077062
19. Amini A., Ohno K., Maeda T., Kunitomo K., Scientifi c Reports, 2018, vol. 8, 15023. https://doi.org/10.1038/s41598-018-33460-5
20. Mondal A., Shukla A., Upadhyaya A., Agrawal D., Science of Sintering, 2010, vol. 42, iss. 2, рp. 169–182. https://doi.org/10.2298/SOS1002169M
21. Hamzehlouia S., Chaouki J., Journal of Chemical and Petroleum Engineering, 2018, vol. 52, iss. 2, рp. 201–210. https://doi.org/10.22059/JCHPE.2018.270160.1257
22. Magunov A. N., Spektral’naja pirometrija [Spectral pyrometry], Moscow, Fizmatlit Publ., 2012, 248 p. (In Russ.)
23. Magunov A. N., Lapshinov B. A., Suvorinov A. V., Development of instruments for measuring the temperature of objects with unknown emissivity, Innovations, 2015, no. 4 (198), pp. 13– 16. (In Russ.)
24. Lapshinov B. A., Suvorinov A. V., Timchenko N. I., Determination of the radiating object temperature by spectral pyrometry method, Electronics: Scien ce, Technology, Business, 2018, no. 6, pp. 116–119. (In Russ.)
25. Lapshinov B. A., Mamontov A. V., Measurement Techniques, 2020, vol. 63, pp. 741–746. https://doi.org/10.1007/s11018-021-01848-x
Review
For citations:
Lapshinov B.A. Methods of temperature measurement in microwave heating technologies. Izmeritel`naya Tekhnika. 2021;(6):20-28. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-6-20-28