Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Methods of temperature measurement in microwave heating technologies

https://doi.org/10.32446/0368-1025it.2021-6-20-28

Abstract

In industrial technological processes associated with the heating of the processed material by microwave radiation, it is necessary to measure the temperatures of objects. Methods for measuring temperatures in the fields of technology using microwave heating systems are considered. The main possibilities, disadvantages and limitations of the used contact and non-contact (optical) measurement methods are determined. The requirements for temperature measurement systems under conditions of exposure to strong electromagnetic fields are listed. The possibilities of the spectral pyrometry method are especially noted.

About the Author

B. A. Lapshinov
Research Institute of Advanced Materials and Technologies
Russian Federation

Boris A. Lapshinov

Moscow



References

1. Morozov O., Kargin A., Savenko G., Trbekh V., Vorobyev I., Industrial Application of Microwave Heating, Electronics: Science, Technology, Business, 2010, no. 3, pp. 2–6. (In Russ.)

2. Advances in induction and microwave heating of mineral and organic materials, ed. Stanislaw Grundas, 2010, In Tech Publ., 752 p. https://doi.org/10.5772/562

3. Magunov A. N., Lazernaja termometrija tverdyh tel [Laser thermometry of solids], Moscow, Fizmatlit Publ., 2001, 224 p. (In Russ.)

4. Arzhannikov A. V., Akhmetov T. D., Kalinin P. V., Stend dlja issledovanij po SVCh nagrevu i prevrashheniju veshhestv [Stand for research on microwave heating and transformation of substances], Novosibirsk, Budker Institute of Nuclear Physics, 2004, 19 p. (In Russ.)

5. Kappe C. O., Chemical Society Reviews, 2013, vol. 42, no. 12, pp. 4977–4990. https://doi.org/10.1039/c3cs00010a

6. Yongguang Luo, Tianqi Liao, Xia Yu, Jing Li, Libo Zhang and Yunhao Xi, Green Processing and Synthesis, 2020, vol. 9, no. 1, pp. 97–106. https://doi.org/10.1515/gps-2020-0011

7. Bradshaw S. M., van Wyk E. J., de Swardt J. B., Microwave heating principles and the application to the regeneration of granular activated carbon, The Journal of The South African Institute of Mining and Metallurgy, 1998, iss. July/August, pр. 201–210.

8. Omran M., Fabritius T., Heikkinen E.-P., Chen G., Royal Society open science, 2017, no. 4. https://doi.org/10.1098/rsos.170710

9. Wiedenmann O., Ramakrishnan R., Saal P., Kilic E., Siart U., Eibert T. F., Volk W., Advances in Radio Science, 2014, vol. 12, pp. 21–28. https://doi.org/10.5194/ars-12-21-2014

10. Longzhi Li, Xiaowei Jiang, Huigang Wang, Jianwei Wang, Zhanlong Song, Xiqiang Zhao, Chunyuan Ma, Journal of Analytical and Applied Pyrolysis, 2017, vol. 125, pp. 318–327. https://doi.org/10.1016/j.jaap.2017.03.009

11. Divin A. G., Ponomarev S. V., Metody i sredstva izmerenij, ispytanij i kontrolja, ch. 3. [Methods and means of measurement, testing and control. Part 3], Tambov State Technical University Publ., 2013, 116 p. (In Russ.)

12. Garcia-Banos B., Reinosa J., Penaranda-Foix F. L., Fernández J. F., Catala-Civera J. M., Scientifi c Reports, 2019, vol. 9, 10809. https://doi.org/10.1038/s41598-019-47296-0

13. Fiber Optic Smart Structures, ed. Etic Udd, Wiley-Interscience, 1995, 688 p.

14. Ramirez A., Hueso J., Mallada R., Santamaria J., Chemical Engineering Journal, 2017, vol. 316, рp. 50–60. https://doi.org/10.1016/j.cej.2017.01.077

15. Ramopoulos V., Link G., Soldatov S., Jelonnek J., International Journal of Microwave and Wireless Technologies, 2018, vol. 10, iss. 5–6, рp. 709–716. https://doi.org/10.1017/S1759078718000727

16. Ano T., Kishimoto F., Sasaki R., Tsubaki S., Maitani M. M., Suzukia E., Wada Y., Physical Chemistry Chemical Physics, 2016, vol. 18, рp. 13173–13179. https://doi.org/10.1039/c6cp02034h

17. Herskowits R., Livshits P., Stepanov S., Aktushev O., Ruschin S., Jerby E., Semiconductor Science and Technology, 2007, vol. 22, no. 8, pp. 863–869. https://doi.org/10.1088/0268-1242/22/8/006

18. Jerby E., Dikhtyar V., Aktushev O., Grosglick U., Science, 2002, vol. 298, iss. 5593, pp. 587–589. https://doi.org/10.1126/science.1077062

19. Amini A., Ohno K., Maeda T., Kunitomo K., Scientifi c Reports, 2018, vol. 8, 15023. https://doi.org/10.1038/s41598-018-33460-5

20. Mondal A., Shukla A., Upadhyaya A., Agrawal D., Science of Sintering, 2010, vol. 42, iss. 2, рp. 169–182. https://doi.org/10.2298/SOS1002169M

21. Hamzehlouia S., Chaouki J., Journal of Chemical and Petroleum Engineering, 2018, vol. 52, iss. 2, рp. 201–210. https://doi.org/10.22059/JCHPE.2018.270160.1257

22. Magunov A. N., Spektral’naja pirometrija [Spectral pyrometry], Moscow, Fizmatlit Publ., 2012, 248 p. (In Russ.)

23. Magunov A. N., Lapshinov B. A., Suvorinov A. V., Development of instruments for measuring the temperature of objects with unknown emissivity, Innovations, 2015, no. 4 (198), pp. 13– 16. (In Russ.)

24. Lapshinov B. A., Suvorinov A. V., Timchenko N. I., Determination of the radiating object temperature by spectral pyrometry method, Electronics: Scien ce, Technology, Business, 2018, no. 6, pp. 116–119. (In Russ.)

25. Lapshinov B. A., Mamontov A. V., Measurement Techniques, 2020, vol. 63, pp. 741–746. https://doi.org/10.1007/s11018-021-01848-x


Review

For citations:


Lapshinov B.A. Methods of temperature measurement in microwave heating technologies. Izmeritel`naya Tekhnika. 2021;(6):20-28. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-6-20-28

Views: 208


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)