

Invariant method for measuring wet gas flow rate
https://doi.org/10.32446/0368-1025it.2021-6-13-19
Abstract
The article deals with one of the important tasks of modern flow measurement, which is related to the measurement of the flow rate and the amount of wet gas. This task becomes especially important when it becomes necessary to obtain information about the separate amount of the dry part of the gas that is contained in the form of a mixture in the wet gas stream. The paper presents the principle of operation and structure of the invariant system for measuring the flow rate of wet gas, which is based on the combined use of differential pressure flowmeters and Coriolis flowmeters. The operation of the invariant wet gas flow rate measurement system is based on the simultaneous application of the multichannel principle and the partial flow measurement method. Coriolis flowmeters and the differential pressure flowmeter are used as the main elements of the system. The proposed measurement system does not off er applications for gases with abundant drip humidity. The article provides information about the test results of the proposed invariant system. The estimation of the metrological characteristics of the invariant system when measuring the flow rate of wet gas is given. The obtained test results of the invariant wet gas flow rate measurement system are relevant for natural gas production, transportation, and storage facilities.
About the Authors
Z. A. DayevKazakhstan
Zhanat А. Dayev
Aktobe
G. E. Shopanova
Kazakhstan
Gulzhan E. Shopanova
Aktobe
B. A. Toksanbaeva
Kazakhstan
Bakytgul А. Toksanbaeva
Aktobe
References
1. Economides M. J., Wood D. A., Journal of Natural Gas Science and Engineering, 2009, vol. 1, pp. 1–13. https://doi.org/10.1016/j.jngse.2009.03.005
2. Yorucu V., Bahramian P., Journal of Natural Gas Science and Engineering, 2015, vol. 24, pp. 464–472. https://doi.org/10.1016/J.JNGSE.2015.04.006
3. Reader-Harris M., Orifi ce Plates and Venturi Tubes, Springer International Publishing Switzerland, 2015, 393 p. https://doi.org/10.1007/978-3-319-16880-7
4. Xu Y., Yuan C., Long Z., Zhang Q., Li Z., Zhang T., Flow Measurement and Instrumentation, 2013, vol. 34, pp. 68–75. https://doi.org/10.1016/j.flowmeasinst.2013.07.014
5. Xu L., Xu J., Dong F., Zhang T., Flow Measurement and Instrumentation, 2003, vol. 14, pp. 211–217. https://doi.org/10.1016/S0955-5986(03)00027-X
6. Hua C., Geng Y., Measurement, 2012, vol. 45, pp. 763–768. https://doi.org/10.1016/j.measurement.2011.12.013
7. Li Y., Wang J., Geng Y., Flow Measurement and Instrumentation, 2009, vol. 20, pp. 168–173. https://doi.org/10.1016/j.flowmeasinst.2009.04.002
8. Steven R., Flow Measurement and Instrumentation, 2002, vol. 12, pp. 361–372. https://doi.org/10.1016/S0955-5986(02)00003-1
9. Steven R., Hall A., Flow Measurement and Instrumentation, 2009, vol. 20, pp. 141–151. https://doi.org/10.1016/j.flowmeasinst.2009.07.001
10. Lupeau A., Platet B., Gajan P., Strzelecki A., Escande J., Couput J. P., Flow Measurement and Instrumentation, 2007, vol. 18, pp. 1–11. https://doi.org/10.1016/j.flowmeasinst.2006.09.002
11. He D., Bai B., Measurement,2014, vol.58,pp. 61–67. https://doi.org/10.1016/j.measurement.2014.08.014
12. He D., Bai B., Flow Measurement and Instrumentation, 2016, vol. 28, pp. 1–6. https://doi.org/10.1016/j.flowmeasinst.2012.07.008
13. Graham E. M., Reader-Harris M., Chinello G., Harkins K., Bowman N., Wales L., Flow Measurement and Instrumentation, 2020, vol. 74, p. 101757. https://doi.org/10.1016/j.flowmeasinst.2020.101757
14. Pan Y., Hong Y., Sun Q., Zheng Z., Wang D., Niu P., Flow Measurement and Instrumentation, 2019, vol. 70, p. 101636. https://doi.org/10.1016/j.flowmeasinst.2019.101636
15. Xu L., Zhou W., Li X., Tang S., IEEE Transactions on Instrumentation and Measurement, 2011, vol. 60, pp. 947–956. https://doi.org/10.1109/TIM.2010.2045934
16. Dayev Zh. A., Yuluyev V. T., Flow Measurement and Instrumentation, 2019, vol. 70, p. 101653. https://doi.org/10.1016/j.flowmeasinst.2019.101653
17. Petrov B. N., Viktorov V. A., Lunkin B. V., et al., Princip invariantnosti v izmeritel’noj tehnike, Moscow, Nauka Publ.,1976.246 p.(In Russ.)
18. Bromberg Je. M., Kulikovskij K. L., Testovye metody povyshenija tochnosti izmerenij, Moscow, Energija Publ., 1978. 176 p. (In Russ.)
19. Dayev Zh. A., Latyshev L. N., Flow Measurement and Instrumentation, 2017, vol. 56, pp. 18–22. https://doi.org/10.1016/j.flowmeasinst.2017.07.001
20. Daev Zh. A., Kairakbaev A. K., Measurement Techniques, 2017, vol. 59, no. 11, pp. 1170–1174. https://doi.org/10.1007/s11018-017-1110-x
21. Dayev Zh. A., Flow Measurement and Instrumentation, 2020, vol. 71, p. 101674. https://doi.org/10.1016/j.flowmeasinst.2019.101674
22.
Review
For citations:
Dayev Z.A., Shopanova G.E., Toksanbaeva B.A. Invariant method for measuring wet gas flow rate. Izmeritel`naya Tekhnika. 2021;(6):13-19. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-6-13-19