

Measurement of the angular motion parameters of the mirror of the scanning device
https://doi.org/10.32446/0368-1025it.2021-6-3-7
Abstract
A scanning device for a space-based environmental monitoring system has been investigated. The main attention is paid to the study of the parameters of the angular motion of the mirror of the scanning device, the uniformity of rotation of which largely determines the quality of the image of the Earth's surface. The principle and results of measuring the parameters of the mirror rotation carried out in a wide angular range are considered. The measurements were performed using a dynamic goniometer-autocollimator, which has been calibrated at the State Standard of Plane Angle Unit GET 22-2014. The repeatability of the average angular velocity of the scanning device mirror and the repeatability of the initial scanning angle are calculated. Nonstationarity in mathematical expectation and variance in random deviations of the angular motion of the mirror from the linear law of scanning is noted. The use of wavelet analysis revealed the frequency of excitation of oscillations in the low-frequency region of the spectrum. The possibility of using the a dynamic goniometer-autocollimator for measuring not only the angular position of the scanning device mirror, but also the angular velocity is shown.
About the Authors
P. A. PavlovRussian Federation
Petr A. Pavlov
St. Petersburg
E. M. Ivashchenko
Russian Federation
Elena M. Ivashchenko
St. Petersburg
References
1. Rozhavskii E. I., Moiseev P. P., Precizionnye optikomehanicheskie skanirujushhie ustrojstva sistemy distancionnogo zondirovanija MSU-GS [Precision optical-mechanical scanning devices of the MSU-GS remote sensing system], Mechanics, control and informatics, 2009, no. 1, pp. 503–509. (In Russ.)
2. Pavlov P. A., Extented abstract of doctoral dissertation in Technical Sciences (Electrotechnical University “LETI”, St. Petersburg, 2008). (In Russ.)
3. Yu. V. Filatov, Extented abstract of doctoral dissertation in Technical Sciences (LITMO, Leningrad, 1991). (In Russ.)
4. Pavlov P. A., Filatov Yu. V., Yudin A. M., Lazernoe uglomernoe ustrojstvo s rasshirennym diapazonom izmerenija [Extended range laser goniometer], Izvestija LETI [Bulletin of the Leningrad Electrotechnical Institute]. 1990, no. 427, p. 63. (In Russ.)
5. Max Born, Emil Volf, Principles of Optics, Oxford, Pergamon Press, 1959.
6. Glagolev I. P., Dorokhin Yu. P., Mamich V. F., Smirnov V. A., Fateev V. D., Measurement Techniques, 1991, vol. 34, pp. 325– 329. https://doi.org/10.1007/BF00979302
7. Julius S. Bendat, Allan G. Piersol, Random Data Analysis and Measurement Procedures, New York, Wiley, 1971, 407 p.
8. Mallat S. G., A Wavelet Tour of Signal Processing, 3rd ed., Academic Press, 2008, 832 p.
9. Pukhova V. M., Kustov T. V., Ferrini G., 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), January 29 – February 1, 2018, Moscow – St. Petersburg, Russia, IEEE Publ., 2018, pp. 1141–1145. https://doi.org/10.1109/EIConRus.2018.8317292
10. Pukhova V., Ferrini G., IOP Conference Series: Materials Science and Engineering, Scanning Probe Microscopy 2017 (SPM-2017), August 27–30 2017, Ekaterinburg, Russia, 2017, vol. 256, 012004. https://doi.org/10.1088/1757-899X/256/1/012004
11. Ashmead J., Quanta, 2012, vol. 1, no. 1, pp. 58–70. https://doi.org/10.12743/quanta.v1i1.5
12. Wang Liqin, Cui Li, Zheng Dezhi, Gu Le, Chinese Journal of Aeronautics, 2008, vol. 21, no. 1, pp. 86–96. https://doi.org/10.1016/S1000-9361(08)60012-6
13. Anuryev V. I., Spravochnik konstruktora-mashinostroitelja [Handbook of the constructor-machine builder], vol. 2, Moscow, Mechanical Engineering Publ., 2001, 912 p. (In Russ.)
Review
For citations:
Pavlov P.A., Ivashchenko E.M. Measurement of the angular motion parameters of the mirror of the scanning device. Izmeritel`naya Tekhnika. 2021;(6):3-7. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-6-3-7