

The foam concrete temperature measuring during its microwave heat treatment
https://doi.org/10.32446/0368-1025it.2021-4-44-48
Abstract
The actual problem of accelerating and reducing the energy costs of the foam concrete slabs heat treatment technological process is considered. It is shown that to solve this problem, it is advisable to use the microwave radiation energy as a heat source. The main advantages of the microwave method of foam concrete slabs heat treatment in comparison with traditional methods are considered. The design of a microwave installation for the foam concrete slabs heat treatment has been developed. The installed microwave radiation sources have energy outputs in the form of a rectangular waveguide openings, which are used as radiating antennas. Huygens-Kirchhoff method was used to calculate the temperature distribution on the foam concrete slab surface; the method of loaded long lines was used to calculate the temperature distribution over the foam concrete slab thickness. A method for measuring the foam concrete slab temperature distribution is proposed. The results of theoretical and experimental temperature distribution studies on the surface and the cross-section of foam concrete slab with a width of 1500 mm, a height of 1000 mm and a thickness of 200 mm, a density of 1000 kg/m3 on the electromagnetic fields oscillation frequency of 2450 MHz are shown. The obtained experimental results showed a high efficiency of using microwave radiation for the foam concrete slabs heat treatment technological processes. Microwave technologies can be used for heat treatment of products made of concrete, reinforced concrete and polymer composite materials.
About the Authors
A. V. MamontovRussian Federation
Alexandr V. Mamontov
Moscow
V. N. Nefedov
Russian Federation
Vladimir N. Nefedov
Moscow
I. V. Nazarov
Russian Federation
Igor V. Nazarov
Moscow
V. P. Simonov
Russian Federation
Valentin P. Simonov
Moscow
S. A. Khritkin
Russian Federation
Sergey A. Khritkin
Moscow
References
1. Gindin M. N., Khitrov A. V., Tekhnologicheskaya liniya dlya proizvodstva melkikh stenovykh blokov iz avtoklavnogo penobetona na massovom syr’e, Construction Materials, 2003, no. 6, pp. 4–6 (In. Russ.)
2. Malinina L. A., Batrakov V. G., Betonovedenie: nastoyashchee i budushchee, Beton i zhelezobeton, 2003, no. 1, pp. 2–6. (In. Russ.)
3. Leonovich S. N., Sviridov D. V., Shchukin G. L., Belanovich A. L., Karpushenkov S. A., Savenko V. P., Kompensatsiya usadki penobetona, Construction Materials, 2015, no. 3, pp. 3–7. (In. Russ.)
4. Subkhankulova E. R., Kondrat’ev V. V., Morozova N. N., Khozin V. G., Treshchinoobrazovanie penobetona plotnost’yu 200 kg/m3, Construction Materials, 2006, no. 1, pp. 46–47. (In. Russ.)
5. Ruzhinskii S. R., Portik A. A, Savinykh A. V., Vse o penobetone, St. Petersburg, StroiBeton Publ., 2006, 630 р. (In. Russ.)
6. Shakhova L. D., Tekhnologiya penobetona. Teoriya i praktika. Monografi ya, Moscow, Assotsiatsii stroitel’nykh vuzov Publ., 2010, 248 p. (In. Russ.)
7. Udachkin I. B., Klyuchevye problem razvitiya proizvodstva penobetona, Construction Materials, 2002, no. 3, pp. 8–9. (In. Russ.)
8. Akhundov A. A., Udachkin V. I., Perspektivy sovershenstvovaniya tekhnologii penobetona, Construction Materials, 2002, no. 3, pp. 10–11. (In. Russ.)
9. Nefedov V. N., Mamontov A. V., Teplovaya obrabotka betona s ispol’zovaniem mikrovolnovogo izlucheniya, Proceedings of the Conference Scientifi c and Technical ”Innovatsionnye informatsionnye tekhnologii”, Praga-2013, Moscow, FGAU GNII ITT “InformikA” Publ., 2013, pp. 258–264. (In. Russ.)
10. Nefedov V. N., Mamontov A. V., The concrete treatment with the use of microwave radiation, Proceedings of the 25th International Conference “Microwave & Telecommunication Technology” (CriMiCo’2015), 6–12 September, Sevastopol, 2015, pp. 944–945.
11. Mamontov A. V., Nefedov V. N., Simonov V. P., Chechetkin A. A., Microwave Method of Curing of Concrete, T-Comm: Telecommunications and transport, 2016, vol. 10, no. 8, pp. 79–82.
12. Revenko B. S., Poluchenie yacheistykh betonov s privlecheniem SVCH-tekhnologii, Molodoi uchenyi, 2017, no. 14, pp. 118–119. (In. Russ.)
13. Arkhangel’skii Yu. S., Ustanovki sverkhvysokochastotnogo diehlektricheskogo nagreva: uchebnik, Saratov, Yuri Gagarin State Technical University of Saratov Publ., 2010, 279 p. (In. Russ.)
14. Nefedov V. N., Mamontov A. V., Simonov V.P., Measurement Techniques, 2016, vol. 59, no. 8, pp. 856–860. https://doi.org/10.1007/s11018-016-1057-3
15. Mamontov A. V., Reznik S. V., Nefedov V. N., Guzeva T. A., Metody snizheniya urovnya pobochnykh izluchenii ot SVCH-ustanovok luchevogo tipa dlya termoobrabotki materialov, Technologies of electromagnetic compatibility, 2013, no. 3, pp. 24–28. (In. Russ.)
Review
For citations:
Mamontov A.V., Nefedov V.N., Nazarov I.V., Simonov V.P., Khritkin S.A. The foam concrete temperature measuring during its microwave heat treatment. Izmeritel`naya Tekhnika. 2021;(4):44-48. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-4-44-48