Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Адаптивный обнаружитель QRS-комплексов электрокардиосигнала на основе преобразования Гилберта

Abstract

A QRS -wave detector based on the consecutive application of a band-pass filtering, the Hilbert transform, and an adaptive thresholding algorithm is developed. The detector is compared with existent QRS -wave detectors using a model of ECG signal contaminated by interferences of various types and intensity. Developed method of QRS -wave detecting is verified using the MIT Physionet database of clinical ECG recordings.

About the Authors

А. Федотов
Самарский национальный исследовательский университет им. акад. С. П. Королева
Russian Federation


А. Акулова
Самарский национальный исследовательский университет им. акад. С. П. Королева
Russian Federation


References

1. Федотов А. А., Акулов С. А. Математическое моделирование и анализ погрешностей измерительных преобразователей биомедицинских сигналов. М.: Физматлит, 2013.

2. Task Force of the European Society of Cardiology and North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation and clinical use // Circulation. 1996. V. 93 (5) P. 1043-1065.

3. Friesen G. M., Jannett T.C., Jadallah M.A., Yates S.L., Quint S.R., Nagle H.T. A comparison of the noise sensitivity of nine QRS detection algorithms // IEEE Transactions on Biomedical Engineering. 1990. V. 27, N. 1. P. 85-98.

4. Biomedical Digital Signal Processing: C Language Examples and Laboratory Experiments for the IBM PC / ed. by Willis J. Tompkins. New Jersey: Prentice Hall, 1993.

5. Theis F. J., Meyer-Base А. Biomedical signal analysis: Contemporary methods and applications. MA: MIT Press, 2010.

6. Elgendi M., Jonkman M., De Boer F. Frequency Bands Effects on QRS Detection // Proc. 3Th Intern. Conf. on Bioinspired Systems and Signal Processing. Germany: Springer-Verlag, 2010. P. 428-431.

7. Федотов А. А., Акулова А. С., Акулов С. А. Анализ параметров частотной фильтрации электрокардиографического сигнала // Измерительная техника. 2014. № 11. С. 65-68.

8. Benitez D., Gaydecki P.A., Zaidi A., Fitzpatrick A.P. The use of the Hilbert transform in ECG signal analysis // Computers in Biology and Medicine. 2001. V. 31. P. 399-406.

9. Рангайян Р. М. Анализ биомедицинских сигналов. Практический подход. М.: Физматлит, 2007.

10. Mc Sharry P. E., Clifford G., Tarassenko L., Smith L.A. A dynamical model for generating synthetic electrocardiogram signals // IEEE Transactions on Biomedical Engineering. 2003. V. 50. N. 3. P. 289-295.

11. Han H. Development of real-time motion artifact reduction algorithm for a wearable photoplethysmography // Proc. the 29th Annual International Conference of the IEEE EMBS. 2007. P. 1539-1541.

12. Новицкий П. В., Зограф И. А. Оценка погрешностей результатов измерений. Л.: Энергоатомиздат, 1991.

13. Pan J., Tompkins W. J. A real time QRS detection algorithm // IEEE Transactions on Biomedical Engineering. 1985. V. 32. P. 230-236.

14. Ruha A., Sallinen S., Nissila S. A Real-Time Microprocessor QRS Detector System with a 1-ms Timing Accuracy for the Measurement of Ambulatory HRV // IEEE Transactions on Biomedical Engineering. 1997. V. 44. N. 3. P. 159-167.

15. Kadambe S., Murray R. Boudreaux-Bartels G.F. Wavelet transform based QRS complex Detector // IEEE Transactions on Biomedical Engineering. 1999. V. 46. N. 7. P. 838-848.

16. Physionet the resourse for complex physiologic signals [Электрон. ресурс] http://physionet.org (дата обращения 16.07.2016 г.)

17. MIT-BIH Arrhythmia Database [Электрон. ресурс] http://www.physionet.org/physiobank/database/mitdb (дата обращения 16.07.2016 г.)

18. Moody G. B., Mark R. G. The impact of the MIT-BIH Arrhythmia Database // IEEE Engineering in Medicine and Biology. 2001. V. 20. N. 3. P. 45-50.


Review

For citations:


 ,   . Izmeritel`naya Tekhnika. 2017;(2):67-71. (In Russ.)

Views: 61


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)