

Approximate methods of solving amplitude-phase problem for continuous signals
https://doi.org/10.32446/0368-1025it.2021-5-37-46
Abstract
Amplitude and phase problems in physical research are considered. The construction of methods and algorithms for solving phase and amplitude problems is analyzed without involving additional information about the signal and its spectrum. Mathematical models of the amplitude and phase problems in the case of one-dimensional and two-dimensional continuous signals are proposed and approximate methods for their solution are constructed. The models are based on the use of nonlinear singular and bisingular integral equations. The amplitude and phase problems are modeled by corresponding nonlinear singular and bisingular integral equations defi ned on the numerical axis (in the one-dimensional case) and on the plane (in the two-dimensional case). To solve the constructed nonlinear singular and bisingular integral equations, spline-collocation methods and the method of mechanical quadratures are used. Systems of nonlinear algebraic equations that arise during the application of these methods are solved by the continuous method of solving nonlinear operator equations. A model example shows the effectiveness of the proposed method for solving the phase problem in the two-dimensional case.
About the Authors
I. V. BoikovRussian Federation
Ilia V. Boikov
Penza
Y. V. Zelina
Russian Federation
Yana V. Zelina
Penza
References
1. Solodovnikov V. V., Vvedenie v statisticheskuyu dinamiku system avtomaticheskogo upravleniya [Introduction to the statistical dynamics of automatic control systems], Moscow, Leningrad., GITTL Publ., 1952, 368 p. (In Russ.)
2. Pupkov K. A, Egupov N. D., Metody klassicheskoi i sovremennoi teorii avtomaticheskogo upravleniya, Uchebnik, t. 1, Matematicheskie modeli, dinamicheskie kharakteristiki i analiz system avtomaticheskogо upravleniya [Methods of classical and modern theory of automatic control, textbook, vol. 1, Mathematical models, dynamic characteristics and analysis of automatic control systems], Moscow, Bauman MGTU Publ., 2004, 656 p. (In Russ.)
3. Pupkov K. A, Egupov N. D. Metody klassicheskoi i sovremennoi teorii avtomaticheskogo upravleniya, Uchebnik, t. 3, Sintez regulyatorov system avtomaticheskogo upravleniya [Methods of classical and modern theory of automatic control, textbook, vol. 3, Synthesis of regulators of automatic control systems], Moscow, Bauman MGTU Publ., 2004, 616 p. (In Russ.)
4. Potapov A. A., Gulyaev Yu. V., Nikitov S. A., Pakhomov A. A., German V. A., Noveishie metody obrabotki izobrazhenii [Latest Image Processing Techniques], Moscow, Fizmatlit Publ., 2008, 496 p. (In Russ.)
5. Colombo A., Galli D. E., Caro L. De; Scattarella F., Carlino E., Scientifi c Reports, 2017, vol. 7, 42236. https://doi.org/10.1038/srep42236
6. Arnal R. D., Millane R. P., 2016 International Conference on Image and Vision Computing New Zealand (IVCNZ), Palmerston North, New Zealand, 2016, November 21–22, 2016, pp. 1–5. https://doi.org/10.1109/IVCNZ.2016.7804432
7. Heldt C., Bockmayr A., Geometric Constraints for the Phase Problem in X-Ray Crystallography, WCB10. Workshop on Constraint Based Methods for Bioinformatics, May 15, 2012, vol. 4, pp. 20–26. https://doi.org/10.29007/p2pj
8. Wolf E., Physics Letters A, 2010, vol. 374, no. 3, pp. 491– 495. https://doi.org/10.1016/j.physleta.2009.10.074
9. Wolf E., Advances in Imaging and Electron Physics, 2011, vol. 165, pp. 283–325. https://doi.org/10.1016/B978-0-12-385861-0.00007-5
10. Teague M. R., Journal of the Optical Society of America, 1983, vol. 73, pp. 1434–1441. https://doi.org/10.1364/JOSA.73.001434
11. Kolenovic E., Journal of the Optical Society of America, 2005, vol. 22, pp. 899–906. https://doi.org/10.1364/JOSAA.22.000899
12. Lewis A., Honigstein D. R., Weinroth J., Werman M., ACS Nano, 2012, vol. 6, pp. 220–226. https://doi.org/10.1021/nn203427z
13. Sheludko D. V., McCulloch A. J., Jasperse M., Quiney H. M., Scholten R. E., Optics Express, 2010, vol. 18, pp. 1586–1599. https://doi.org/10.1364/OE.18.001586
14. Nalegaev S. S., Petrov N. V., Bespalov V. G., Special features of iteration methods for phase problem in optics, Scientifi c and Technical Journal of Information Technologies, Mechanics and Optics, 2012, no. 6 (82) pp. 30–35. (In Russ.)
15. Boikov I. V., Diff erential Equations, 2012, vol. 48, pp. 1288– 1295. https://doi.org/10.1134/S001226611209008X
16. Daletskii Yu. L., Krein M. G., Ustoichivost’ reshenii diff erentsial’nykh uravnenii v banakhovom prostranstve [Stability of solutions of diff erential equations in Banach space], Moscow, Nauka Publ., 1970, 534 p. (In Russ.)
17. Boikov I. V., Priblizhennye metody vychisleniya singulyarnykh i gipersingulyarnykh integralov, chast’ pervaya, Singulyarnye integraly [Approximate methods for calculating singular and hypersingular integrals, part 1, Singular integrals], Penza, PSU Pub., 2005, 360 p. (In Russ.)
18. Gakhov F. D., Chersky Yu. I., Uravneniya tipa svertki [Convolution type equations], Moscow, Nauka Publ., 1978, 295 p. (In Russ.)
19. Boikov I. V., Priblizhennoe reshenie singulyarnykh integral’nykh uravnenii [Approximate Solution of Singular Integral Equations], Penza, PSU Publ., 2004, 316 p. (In Russ.)
20. Boikov I., Zelina Y., Vasyunin D., 2020 Moscow Workshop on Electronic and Networking Technologies (MWENT), Proceedings of the International Conference, Moscow, Russia, 2020, March 11–13, IEEE, 2020, pp. 1–5. https://doi.org/10.1109/MWENT47943.2020.9067415
21. Gakhov F. D., Kraevye zadachi [Boundary value problems], Moscow, Nauka Publ., 1977, 640 p. (In Russ.)
Review
For citations:
Boikov I.V., Zelina Y.V. Approximate methods of solving amplitude-phase problem for continuous signals. Izmeritel`naya Tekhnika. 2021;(5):37-46. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-5-37-46