Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Bridge method for studying the spectra of currentf uctuations in tungsten flaments at the frequency range 1,5∙10–5–5∙10–1 Hz

https://doi.org/10.32446/0368-1025it.2021-5-18-25

Abstract

The problem of the absence of methods for measuring low-frequency fluctuation processes at high temperatures is considered. An original bridge method is proposed for measuring the spectra of low-frequency current fluctuations in tungsten filaments of electric lamps in a controlled temperature range of 300–2700 K. Application of the bridge measurement scheme allows us to reduce the influence of degradation processes in the filament and the power source's own noise on the measurement results by several orders of magnitude. Spectral analysis of low frequency current fluctuations is performed at the frequency range 1.5∙10–5–5∙10–1 Hz using an automated setup based on a personal computer under the control of specially developed software.

About the Authors

Y. A. Zakharov
Bashkir State University
Russian Federation

Yuriy A. Zakharov

Ufa



S. S. Gots
Bashkir State University
Russian Federation

Sergey S. Gots

Ufa



R. Z. Bakhtizin
Bashkir State University
Russian Federation

Rauf Z. Bakhtizin

Ufa



References

1. Van der Ziel A., Noise in measurements, John Wiley & Sons, New York, 1976, 228 p.

2. Zakharov Yu. A., Gots S. S., Bakhtizin R. Z., Radiophysics and Quantum Electronics, 2020, vol. 63, no. 3, pp. 227–240. https://doi.org/10.1007/s11141-021-10048-0

3. Stepanov A. V., Direct measurement of non equilibrium noise, Proceedings of the scientifi c and methodological seminar reports “Fluctuation and degradation processes in semiconductor devices”, Moscow, Russia, November 28–30, 2011, Moscow, Popov MSTSREEC, MPEI, 2012, pp. 49–55. (In. Russ.)

4. Gots S. S. Osnovy opisanija i komp’juternyh raschetov harakteristik sluchajnyh processov v statisticheskoj radiofi zike [Fundamentals of description and computer calculations of characteristics of random processes in statistical radiophysics], Ufa, Еditorial and publishing department of Bashkir state university, 2005, 168 p. (In. Russ.)

5. Gorlov M. I., Smirnov D. Y., Zolotareva E. A., Russian microelectronics, 2011, vol. 40, no. 1, pp. 47–51. https://doi.org/10.1134/S1063739710061010

6. Zakharov Yu. A., Gots S. S., Bakhtizin R. Z., Measurement Techniques, 2019, vol. 62, no. 4, pp. 358–364. https://doi.org/10.1007/s11018-019-01630-0

7. Neri B., Ciofi C., Dattilo V., IEEE Transactions on Electron Devices, 1997, vol. 44, no. 9, pp. 1454–1459. https://doi.org/10.1109/16.622601

8. Zhigalskii G. P., Physics-Uspekhi (Advances in Physical Sciences), 2003, vol. 46, no. 5, pp. 449–471. https://doi.org/10.1070/PU2003v046n05ABEH001244

9. Bakhtizin R. Z., Gots S. S., Ustanovka dlja issledovanija nizkochastotnogo shuma avtojemissionnyh katodov [Apparatus for measuring low-frequency noise of fi eld-emission cathodes], Instruments and Experimental Techniques, 1981, vol. 24, no. 3. pp. 711–713. (In. Russ.)

10. Wittrock S., Tsunegi S., Yakushiji K., Fukushima A., Kubota H., Bortolotti P., Ebels U., Yuasa S., Cibiel G., Galliou S., Rubiola E., Cros V., Phys. Rev. B, 2019, vol. 99, no. 23, 235135. https://doi.org/10.1103/PhysRevB.99.235135

11. Aliev F. G., Cascales J. P., Hallal A., Chshiev M., Andrieu S., Phys. Rev. Lett., 2014, vol. 112, no. 21, 216801. https://doi.org/10.1103/PhysRevLett.112.216801

12. Chiteme C., McLachlan D. S., Balberg I., Phys. Rev. B, 2003, vol. 67, no. 2, 024207. https://doi.org/10.1103/PhysRevB.67.024207

13. Guerrero R., Solignac A., Pannetier-Lecoeur M., Apertet Y., Lecoeur P., Fermon C., Phys. Rev. B, 2010, vol. 82, no. 3, 035102. https://doi.org/10.1103/PhysRevB.82.035102

14. Baskakov S. I. Radiotehnicheskie cepi i signaly [Radio engineering circuits and signals], Moscow, Higher school publ., 2000, 464 p. (In. Russ.)

15. Ghots S. S., Bakhtizin R. Z., Applied Surface Science, 2003, vol. 215, no. 1–4, pp. 105–112. https://doi.org/10.1016/S0169-4332(03)00314-3

16. Timashev S. F., Polyakov Yu. S., Lakeev S. G., Misurkin P. I., Danilov A. I., Russian Journal of Physical Chemistry A. 2010. vol. 84, no. 10, pp. 1807–1825. https://doi.org/10.1134/S0036024410100183

17. Périgois C., Belczynski C., Bulik T., Regimbau T., Phys. Rev. D, 2021, vol. 103, no. 4, 043002. https://doi.org/10.1103/PhysRevD.103.043002

18. Polnarev A. G., Roxburgh I. W., Baskaran D., Phys. Rev. D, 2009, vol. 79, no. 8, 082001. https://doi.org/10.1103/PhysRevD.79.082001

19. Edlund J. A., Tinto M., Królak A., Nelemans G., Phys. Rev. D, 2005, vol. 71, no. 12, 122003. https://doi.org/10.1103/PhysRevD.71.122003


Review

For citations:


Zakharov Y.A., Gots S.S., Bakhtizin R.Z. Bridge method for studying the spectra of currentf uctuations in tungsten flaments at the frequency range 1,5∙10–5–5∙10–1 Hz. Izmeritel`naya Tekhnika. 2021;(5):18-25. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-5-18-25

Views: 83


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)